• Title/Summary/Keyword: fretting fatigue

Search Result 78, Processing Time 0.057 seconds

EXPERIMENTAL INVESTIGATION OF FRETTING BEHAVIOR OF TiAlN COATED NUCLEAR FUEL ROD CLADDING MATERIALS

  • Kim, T.H.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.185-186
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to be an ideal solution to fretting damage since fretting is closely related to wear. corrosion and fatigue. Therefore. in this study the fretting wear experiment was performed using TiAlN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaloy-4 as on of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAlN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and fretting wear mechanisms were brittle fracture and plastic flow at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher ship amplitude.

  • PDF

Fretting Wear Evaluation of TiAIN Coated Nuclear Fuel Rod Cladding Materials (TiAIN 코팅한 핵연료봉 피복재의 프레팅 마멸 평가)

  • Kim, Tae-Hyeong;Kim, Seok-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.88-95
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 Tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to bean ideal solution to fretting damage since fretting is closely related to wear, corrosion and fatigue. Therefore, in this study the fretting wear experiment was peformed using TiAIN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaioy-4 tube as one of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAIN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and the fretting wear mechanisms were delamination and plastic flow following by brittle fracture at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher slip amplitude.

  • PDF

A Study for Improvement of Cornering Fatigue Test by Eliminating a Fretting Effect on Steel Wheel to enhance Durability and Reliability (스틸 휠 굽힘 모멘트 내구시험의 내구신뢰성 개선에 대한 연구 - 스틸 휠 접촉면의 프랫팅 제거 -)

  • Chung, Soo-Sik;Jung, Won-Wook;Yoo, Yeon-Sang;Kang, Woo-Jong;Kim, Dae-Sung;Kwon, Il-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1326-1330
    • /
    • 2008
  • The failure mode of steel road wheels in a vehicle is cracks from ventilation hole through to contact plane on steel wheel's disc plate. But a number of cracks of Cornering Fatigue Limit Test is on contact plane near to wheel nut mounting area, even though it's satisfied with specified cycles. So this paper searches out causes to improve durability and reliability of C.F.T by uni-axial bending moment test. The verified cause is a "fretting" on contact area of steel wheel. In result, this paper suggests a solution to prevent a fretting by inserting a damping shim, 0.7mm between steel wheel contact areas. Therefore this paper makes it possible to move crack position of C.F.T in steel wheel from contact plane to vehicle's failure mode.

  • PDF

Axial Fatigue Behavior of Structural Cables (구조용 케이블의 축방향 피로거동)

  • Suh, Jeong In;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.589-600
    • /
    • 1998
  • This study was planned to verify the usefulness of Latin square design method in fatigue tests of cables and to see the axial fatigue behavior of wire ropes being used as hangers in suspension bridges. Three parameters : mean stress, stress range. and specimen length, were adopted for verification. The effects of these parameters are in argument except for stress range. Three classes in each parameter were used. Triple replication was performed in each cell to increase the number of replication (or degree of freedoms). The major cause of fatigue failure was fretting fatigue at trellis contact point. Three chosen parameters were proved to be significant. It was verified that the effect of stress range was in agreement with expectation, but the effect of specimen length was contrary to the expectation. It was also observed that the effect of mean stress depended upon the chosen level. Therefore Latin square design method is effective for verifying the parameters that affect fatigue behaviour under orthogonality conditions.

  • PDF

THE CHARACTERISTICS OF FRETTING WEAR

  • Iwabuchi, Akira
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.1-3
    • /
    • 1996
  • The characteristics of fretting wear are reviewed. Fretting damage depends on slip amplitude and classified into three groups: (1) an annular damage according to Mindlin's analysis at microslip region, (2) strong adhesive deformation without loose wear particles at the intermediate region, and (3) formation of fine oxide particles at the gross slip region. The critical slip amplitude of fretting is the boundary between (2) and (3). The boundary slip amplitude depends on normal load. The wear rate increases and saturates with increasing slip amplitude. But it is constant by considering the critical amplitude. The role of oxide particles are discussed. Three different actions are noted: accelerating wear, preventing wear and insignificant effect. The oxide shows two opposing effect depends on normal load and slip amplitude. This is related to the removal rate from the interface (abrasive action) and compaction rate at the interface to form a protective layer. The effect of oxidation is significant to determine the wear and friction. The diffusion of oxygen is restricted at the small amplitude. As a result, crack formation at the boundary is a predominant damage, related to fretting fatigue damage.

  • PDF

Fretting Wear Simulation of Press-Fitted Shaft with Finite Element Analysis and Influence Function Method (유한요소해석과 영향함수법을 이용한 압입축의 프레팅 마모해석)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

The Study of Microstructure Influence at Fretting Contacts using Crystal Plasticity Simulation (결정 소성 시뮬레이션을 이용한 프레팅 접촉에서의 마이크로 구조 영향에 관한 연구)

  • Ko, Jun-Bin;Goh, Chung-Hyun;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.84-91
    • /
    • 2005
  • The role of microstructure is quite significant in fretting of Ti-6Al-4V since its material properties depend strongly on crystallographic texture. In this study, we adopt crystal plasticity theory with a 2-D planar triple slip idealization to account fur microstructure effects such as grain orientation distribution, grain geometry, as well as $\alpha$ colony size. Crystal plasticity simulations suggest strong implications of microstructure effects at fretting contacts.

A Behavior of Fatigue Crack Growth of Nonmagnetic Steel with Large Grain Size (조대조직을 갖는 비자성강의 피로균열진전거동)

  • Lee, Jong-Hyung;Choi, Seong-Dae;Cheong, Seon-Hwan;Kwon, Hyun-Kyu;Yang, Seong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.88-94
    • /
    • 2004
  • High manganese steel was maintained stability of Non-Magnetics performance. Fatigue tests were carried out under constant stress amplitude, using a non-magnetic high manganese steel. The fatigue crack growth mechanism of the high manganese steel was clarified from results such as observation of crack growth path and fracture surface. The result of getting this study was shown as following: 1) Remarkably ${\Delta}Kth$ of the high manganese steel is big with about 3 times of the general steel product. 2) In the low ${\Delta}K$ value region, da/dN is dependent on Kmax, and in the high ${\Delta}K$ value region, it is dependent on ${\Delta}Keff$. The reason of this behavior is crack closure due to fracture surface roughness and fretting oxide. 3) It seems to ease the stress concentration of crack tip crack growth behavior in the ${\Delta}Kth$ vicinity by the generation of the secondary crack.

  • PDF