• Title/Summary/Keyword: fresh yield

Search Result 994, Processing Time 0.023 seconds

Development of a Planting Density-Growth-Harvest Chart for Common Ice Plant Hydroponically Grown in Closed-type Plant Production System (식물 생산 시스템에서 수경재배한 Common Ice Plant의 재식밀도-생육-수확 도표 개발)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.106-110
    • /
    • 2016
  • In this study, a planting density-growth-harvest (PGH) chart was developed to easily read the growth and harvest factors such as crop growth rate, relative growth rate, shoot fresh weight, shoot dry weight, harvesting time, marketable rate, and marketable yield of common ice plant (Mesembryanthemum crystallinum L.). The plants were grown in a nutrient film technique (NFT) system in a closed-type plant factory using fluorescent lamps with three-band radiation under a light intensity of $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 12 h. Growth and yield were analyzed under four planting densities ($15{\times}10cm$, $15{\times}15cm$, $15{\times}20cm$, and $15{\times}25cm$). Shoot fresh and dry weights per plant increased at a higher planting density until reached an upper limit and yield per area was also same tendency. Crop growth rate, relative growth rate and lost time were described using quadratic equation. A linear relationship between shoot dry weight and fresh weights was observed. PGH chart was constructed based on the growth data and making equations. For instance, with within row spacing (= 20 cm) and fresh weight per plant at harvest (= 100 g), we can estimate all the growth and harvest factors of common ice plant. The planting density, crop growth rate, relative growth rate, lost time, shoot dry weight per plant, harvesting time, and yield were $33plants/m^2$, $20g{\cdot}m^{-2}{\cdot}d^{-1}$, $0.27g{\cdot}g^{-1}{\cdot}d^{-1}$, 22 days, 2.5 g/plant, 26 days after transplanting, and $3.2kg{\cdot}m^{-2}$, respectively. With this chart, we could easily obtain the growth factors such as planting density, crop growth rate, relative growth rate, lost time and the harvest factors such as shoot fresh and dry weights, harvesting time, marketable rate, and marketable yield with at least two parameters, for instance, planting distance and one of harvest factors of plant. PGH charts will be useful tools to estimate the growth and yield of crops and to practical design of a closed-type plant production system.

Yield and Chemical Composition of Cassava Foliage and Tuber Yield as Influenced by Harvesting Height and Cutting Interval

  • Khang, Duong Nguyen;Wiktorsson, Hans;Preston, Thomas R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1029-1035
    • /
    • 2005
  • A 3${\times}$4 factorial field experiment with a complete randomised split-plot design with four replicates was conducted from June 2002 to March 2003 at the experimental farm of the Nong Lam University, Ho Chi Minh City, Vietnam, to determine effects of different harvesting heights (10, 30 and 50 cm above the ground) and cutting intervals (45, 60, 90 and 285 days) on yield of foliage and tubers, and chemical composition of the foliage. Cassava of the variety KM 94 grown in plots of 5 m${\times}$10 m at a planting distance of 30 cm${\times}$50 cm was hand-harvested according to respective treatments, starting 105 days after planting. Foliage from the control treatment (285 days) and all tubers were only harvested at the final harvest 285 days after planting. Dry matter and crude protein foliage yields increased in all treatments compared to the control. Mean foliage dry matter (DM) and crude protein (CP) yields were 4.57, 3.53, 2.49, and 0.64 tonnes DM $ha^{-1}$ and 939, 684, 495 and 123 kg CP $ha^{-1}$ with 45, 60, 90 and 285 day cutting intervals, respectively. At harvesting heights of 10, 30 and 50 cm the DM yields were 4.27, 3.67 and 2.65 tonnes $ha^{-1}$ and the CP yields were 810, 745 and 564 kg $ha^{-1}$, respectively. The leaf DM proportion was high, ranging from 47 to 65%. The proportion of leaf and petiole increased and the stem decreased with increasing harvesting heights and decreasing cutting intervals. Crude protein content in cassava foliage ranged from 17.7 to 22.6% and was affected by harvesting height and cutting interval. The ADF and NDF contents of foliage varied between 22.6 and 30.2%, and 34.2 and 41.2% of DM, respectively. The fresh tuber yield in the control treatment was 34.5 tonnes $ha^{-1}$. Cutting interval and harvesting height had significant negative effects on tuber yield. The most extreme effect was for the frequent foliage harvesting at 10 cm harvesting height, which reduced the tuber yield by 72%, while the 90 day cutting intervals and 50 cm harvesting height only reduced the yield by 7%. The mean fresh tuber yield decreased by 56, 45 and 27% in total when the foliage was harvested at 45, 60 and 90 day cutting intervals, respectively. It is concluded that the clear effects on quantity and quality of foliage and the effect on tuber yield allow alternative foliage harvesting principles depending on the need of fodder for animals, value of tubers and harvesting cost. An initial foliage harvest 105 days after planting and later harvests with 90 days intervals at 50 cm harvesting height increased the foliage DM and CP yield threefold, but showed only marginal negative effect on tuber yield.

Study on High Forage Production in Double Cropping Systems with Barley and Corn at paddy field in Middle Region (청보리-옥수수 작부체계시 조사료 최대생산을 위한 청보리 수확시기 구명)

  • Ju, Jung-Il;Kang, Young-Sik;Seong, Yeul-Gue;Ji, Hee-Chung;Lee, Hee-Bong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • This experiment was carried out to determine the harvesting day after heading of barley for highest total forage yield in double cropping with corn at paddy field in middle region. The fresh barley yield was the highest at the harvest of 20 days after heading, but the dry matter yield and TDN yield were the highest at the harvest of 25 days after heading because of higher dry matter rate. The dry matter yield of corn after the harvest of 25 days after heading was decreased about 16 percent than that of the check, sowing on april 25. But total fresh yield of corn monoculture was lower about 31 percent, and decreased 28 percent of dry matter and 23 percent of TDN yield, respectively, than that of the double cropping system with corn and barley. In double cropping system at paddy field, the total forage yield was the highest at the harvest of 25 days after heading of barley and grew corn subsequently. Although yield of corn was reduced by late sowing, the total forage yield was increased by double cropping system compared with corn monoculture.

Effect of Activated Carbon on Growth of Allium tuberosum in Green House

  • Choi Seong-Kyu;Park Yeong-Tyae
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.225-229
    • /
    • 2005
  • This study was conducted to investigate the effect of activated carbon on leave production of Allium tuberosum. Growth characteristics including plant height and leaf length were the highest when activated carbon was added with 5%, suggesting that optimum amount of activated carbon was ranged from 5 to 10%. Weight of fresh green vegetable in Allium tuberosum was low in control. And fresh weight of Allium tuberosum was higher in 5% treatment of activated carbon. However, when the plants were grown in activated carbon of $5{\sim}10%$, fresh yield of green vegetable of Allium tuberosum can be increased by using Activated Carbon. Activated carbon can be utilized as a soil conditioner in agricultural crop areas.

  • PDF

Inhibitory Effect of Mugwort Extracts on Tyrosinase Activity (쑥 추출물의 Tyrosinase 효소활성에 미치는 억제효과)

  • 곽정훈;서운교;한영환
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.220-223
    • /
    • 2001
  • To determine the inhibition of mushroom tyrosinase activity, fresh and dried mugwort, Artemisia princeps was extracted initially with water and ethyl alcohol, and subsequently with hexane, chloroform and ethyl acetate in that order. The highest yield was obtained from the ethyl acetate (15.2%) and hexane (15.5%) fraction of the ethanolic extract of fresh and dried mugwort, respectively. For all fractions tested, the inhibition of tyrosinase activity by fresh mugwort was higher than that of dried mugwort, and the inhibition ratio of tyrosinase activity was 98.9% in the chloroform fraction and 96.7% in the hexane fraction.

  • PDF

Effect of Light Transmittance Control on the Root Yield and Quality during the Growing Season of Panax ginseng (생육시기별 광량조절이 인삼의 수량 및 품질에 미치는 영향)

  • Cheon, Seong-Ki;Lee, Tae-Su;Yoon, Jong-Hyuk;Lee, Sung-Sik;Mok, Sung-Kyun
    • Journal of Ginseng Research
    • /
    • v.28 no.4
    • /
    • pp.196-200
    • /
    • 2004
  • This study was conducted to compare the root weight, yield, quality of fresh and red ginseng roots and crude saponin content in roots between fixing light transmittance(Control) and changing light transmittance(C.L.T.) during the ginseng growing seasons. The root weight in C.L.T. was higher than control by $35{\%}$ in early growth stage, $28{\%}$ in middle growth stage and $26{\%}$ in late growth stage in 6 years old ginseng plant. Root yield per 10a in C.L.T. was increased about $40{\%}$ as compared with that of control, also 1st and 2nd grade of fresh ginseng roots in C.L.T. was higher $(50.3{\%})$ compared with that $(12.9{\%})$ of control. The specific gravity of ginseng roots grown under the C.L.T. was exhibited the sig­nificant difference than control during the growing season in 4 and 6 years old ginseng plants. Red ginseng quality in C.L.T. was not only improved remarkably due to the increasement of heaven and earth grade red ginseng but also increased in crude saponin content than control. Therefore it needs to change the light transmittance(increasing light dur­ing low temperature periods and decreasing light during high temperature period) during the growing season for high yield and good qualities of ginseng roots.

Optimum Harvesting Time Based on Growth Characteristics of Four-year Ginseng (4년생 인삼에서 생육특성과 수확적기)

  • Ah, Young-Nam;Lee, Seon-Young;Choung, Myoung-Gun;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.211-215
    • /
    • 2002
  • This study was carried out to find out the optimum harvesting time on the basis of physiological characteristics, yield and commercial value in four years old ginseng. For this purpose, the changes of agronomic growth characteristics of the aerial and underground parts with different growing stages were examined with fourth year ginseng. The leaf growth was dramatically increased from the mid-April (shooting stage) to the mid-May (flowering stage), and the growth was nearly completed by the mid-May, but the stem growth continued by the mid-August. The weight of fresh root decreased from the April (20.7g) to the June (18.2g), but increased from the June to the October(45. 1g). The yield of fresh root per "Kan" was 1.5 kg, 1.2kg and 1.3kg at the April, the May and the June, respectively, thereafter continually increased to 2.9 kg of the October, which showing the maximum yield. In conclusion, the ginseng root was generally harvested from the September to the October at farm-house, but it had better be harvested after the mid-October rather than from September to October considering the weight of dry root and the yield of fresh ginseng.h ginseng.

Genetic Improvement for Yield and Yield Related Traits by Introgressive Hybridization in Sweet Corn

  • Nigussie Mandefro;Saleh Ghizan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • Proper choice of source populations contributes to the ultimate success of selection for genetic improvement. The source population should possess the most desirable alleles at as many loci as possible for intra population improvement. Such desirable alleles can be intensified by introgression of exotic germ plasm into locally adapted ones through hybridization followed by selection. The objectives of this study were to determine the mean performance, genetic variability $({\sigma}^2G)$ and heritability of fresh ear yield and other important traits within two sweet corn source populations, $BC1-10{\times}Syn-II$ and BC2-10. One hundred selfed progenies from each of the two source populations were evaluated in a $10\times10$ lattice design, at the Institute of Bioscience (IBS) Farm, University of Putra Malaysia (UPM) following the recommended cultural practices. Significant differences among selfed progenies within $BC1-10{\times}Syn-II$ were observed for all traits, while differences among selfed progenies within BC2-10 were noted for fresh ear yield, ear length, ear diameter, number of kernels per row, ear height, days to tasseling and days to silking. Progenies developed from $BC1-10{\times}Syn-II$ population had higher estimates of ${\sigma}^2G$ than did progenies from BC2-10 population for number of kernel rows per ear, total soluble solids, plant height, days to tasseling and days to silking, showing that selection to improve these traits would be more effective in selfed progenies of $BC1-10{\times}Syn-II$ than that in BC2-10. On the other hand, progenies developed from BC2-10 population had higher estimates of ${\sigma}^2G$ for ear length, ear diameter and ear height, indicating that progenies from this population would have better genetic gain than $BC1-10{\times}Syn-II$. Comparable estimates of genetic variance were found for fresh ear yield, and number of kernels per row, indicating that genetic improvement of the two source populations is expected to produce similar genetic gains for these two traits. Therefore, selfed progenies developed from both source populations could be used to improve the two populations for various traits and thereby develop superior genotypes for immediate use in the production system.

Influence of Sowing Time on Growth, Yield and Nutritional Quality of Forage Rape in Spring

  • Kwon, Byung-Sun;Shin, Jeong-Sik;Park, Hee-Jin;Shin, Jong-Sup;Choi, Seong-Yu
    • Plant Resources
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2003
  • To determine as optimal sowing time of forage rape in spring time in southern areas of Korea, forage rape cv. Velox, the highest yielding variety among introduced varieties of forage rape, was grown under five different sowing times. Yield components such as plant length, number of branches and number of leaves etc. were higher at the sowing time of Mar. 15 and Mar. 25. The plants sown at Mar. 15 and Mar. 25 also showed highest fresh and dry matter yield. When plants were grown under later sowing time, they showed higher values in content of crude protein and lower values in contents of crude fiber such as Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), cellulose and lignin. There was no relationship between variation of In Vitro Dry matter Digestibility (IVDMD) and sowing time. The plants sown at Mar. 15 and Mar. 25 showed highest digestible dry matter yields.

  • PDF

Influence of Plant Density on Growth, Yield and Nutritional Quality of Forage Rye

  • Kwon, Byung-Sun
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.170-173
    • /
    • 2004
  • To determine optimal plant density of forage rye in southern areas of Korea, forage rye cv. Paldanghomil, the highest yielding variety among experimental varieties of forage rye, was grown under five different plant density. Yield components such as plant height, and number of leaves were highest at the broad casting. Plants sown at broadcasting also showed highest fresh and dry matter yield. When plants were grown of the broad casting, they showed higher values in content of crude protein and lower values in contents of crude fiber such as neutral detergent fiber(NDF), acid detergent fiber(ADF), cellulose and lignin. There was no relationship between variation of in vitro dry matter digestibility(IVDMD) and plant density. Plants sown at the broad casting showed highest digestible dry matter yields.

  • PDF