• Title/Summary/Keyword: frequent pattern mining

Search Result 103, Processing Time 0.026 seconds

Efficient Mining of Interesting Patterns in Large Biological Sequences

  • Rashid, Md. Mamunur;Karim, Md. Rezaul;Jeong, Byeong-Soo;Choi, Ho-Jin
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2012
  • Pattern discovery in biological sequences (e.g., DNA sequences) is one of the most challenging tasks in computational biology and bioinformatics. So far, in most approaches, the number of occurrences is a major measure of determining whether a pattern is interesting or not. In computational biology, however, a pattern that is not frequent may still be considered very informative if its actual support frequency exceeds the prior expectation by a large margin. In this paper, we propose a new interesting measure that can provide meaningful biological information. We also propose an efficient index-based method for mining such interesting patterns. Experimental results show that our approach can find interesting patterns within an acceptable computation time.

Spatiotemporal Pattern Mining Technique for Location-Based Service System

  • Vu, Nhan Thi Hong;Lee, Jun-Wook;Ryu, Keun-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.421-431
    • /
    • 2008
  • In this paper, we offer a new technique to discover frequent spatiotemporal patterns from a moving object database. Though the search space for spatiotemporal knowledge is extremely challenging, imposing spatial and timing constraints on moving sequences makes the computation feasible. The proposed technique includes two algorithms, AllMOP and MaxMOP, to find all frequent patterns and maximal patterns, respectively. In addition, to support the service provider in sending information to a user in a push-driven manner, we propose a rule-based location prediction technique to predict the future location of the user. The idea is to employ the algorithm AllMOP to discover the frequent movement patterns in the user's historical movements, from which frequent movement rules are generated. These rules are then used to estimate the future location of the user. The performance is assessed with respect to precision and recall. The proposed techniques could be quite efficiently applied in a location-based service (LBS) system in which diverse types of data are integrated to support a variety of LBSs.

  • PDF

BAYESIAN CLASSIFICATION AND FREQUENT PATTERN MINING FOR APPLYING INTRUSION DETECTION

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.713-716
    • /
    • 2005
  • In this paper, in order to identify and recognize attack patterns, we propose a Bayesian classification using frequent patterns. In theory, Bayesian classifiers guarantee the minimum error rate compared to all other classifiers. However, in practice this is not always the case owing to inaccuracies in the unrealistic assumption{ class conditional independence) made for its use. Our method addresses the problem of attribute dependence by discovering frequent patterns. It generates frequent patterns using an efficient FP-growth approach. Since the volume of patterns produced can be large, we propose a pruning technique for selection only interesting patterns. Also, this method estimates the probability of a new case using different product approximations, where each product approximation assumes different independence of the attributes. Our experiments show that the proposed classifier achieves higher accuracy and is more efficient than other classifiers.

  • PDF

High Utility Pattern Mining using a Prefix-Tree (Prefix-Tree를 이용한 높은 유틸리티 패턴 마이닝 기법)

  • Jeong, Byeong-Soo;Ahmed, Chowdhury Farhan;Lee, In-Gi;Yong, Hwan-Seong
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.341-351
    • /
    • 2009
  • Recently high utility pattern (HUP) mining is one of the most important research issuer in data mining since it can consider the different weight Haloes of items. However, existing mining algorithms suffer from the performance degradation because it cannot easily apply Apriori-principle for pattern mining. In this paper, we introduce new high utility pattern mining approach by using a prefix-tree as in FP-Growth algorithm. Our approach stores the weight value of each item into a node and utilizes them for pruning unnecessary patterns. We compare the performance characteristics of three different prefix-tree structures. By thorough experimentation, we also prove that our approach can give performance improvement to a degree.

Searching Sequential Patterns by Approximation Algorithm (근사 알고리즘을 이용한 순차패턴 탐색)

  • Sarlsarbold, Garawagchaa;Hwang, Young-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.29-36
    • /
    • 2009
  • Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence database, is an important data mining problem with broad applications. Since a sequential pattern in DNA sequences can be a motif, we studied to find sequential patterns in DNA sequences. Most previously proposed mining algorithms follow the exact matching with a sequential pattern definition. They are not able to work in noisy environments and inaccurate data in practice. Theses problems occurs frequently in DNA sequences which is a biological data. We investigated approximate matching method to deal with those cases. Our idea is based on the observation that all occurrences of a frequent pattern can be classified into groups, which we call approximated pattern. The existing PrefixSpan algorithm can successfully find sequential patterns in a long sequence. We improved the PrefixSpan algorithm to find approximate sequential patterns. The experimental results showed that the number of repeats from the proposed method was 5 times more than that of PrefixSpan when the pattern length is 4.

IRFP-tree: Intersection Rule Based FP-tree (IRFP-tree(Intersection Rule Based FP-tree): 메모리 효율성을 향상시키기 위해 교집합 규칙 기반의 패러다임을 적용한 FP-tree)

  • Lee, Jung-Hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2016
  • For frequency pattern analysis of large databases, the new tree-based frequency pattern analysis algorithm which can compensate for the disadvantages of the Apriori method has been variously studied. In frequency pattern tree, the number of nodes is associated with memory allocation, but also affects memory resource consumption and processing speed of the growth. Therefore, reducing the number of nodes in the tree is very important in the frequency pattern mining. However, the absolute criteria which need to order the transaction items for construction frequency pattern tree has lowered the compression ratio of the tree nodes. But most of the frequency based tree construction methods adapted the absolute criteria. FP-tree is typically frequency pattern tree structure which is an extended prefix-tree structure for storing compressed frequent crucial information about frequent patterns. For construction the tree, all the frequent items in different transactions are sorted according to the absolute criteria, frequency descending order. CanTree also need to absolute criteria, canonical order, to construct the tree. In this paper, we proposed a novel frequency pattern tree construction method that does not use the absolute criteria, IRFP-tree algorithm. IRFP-tree(Intersection Rule based FP-tree). IRFP-tree is constituted with the new paradigm of the intersection rule without the use of the absolute criteria. It increased the compression ratio of the tree nodes, and reduced the tree construction time. Our method has the additional advantage that it provides incremental mining. The reported test result demonstrate the applicability and effectiveness of the proposed approach.

Performance Analysis of Siding Window based Stream High Utility Pattern Mining Methods (슬라이딩 윈도우 기반의 스트림 하이 유틸리티 패턴 마이닝 기법 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.53-59
    • /
    • 2016
  • Recently, huge stream data have been generated in real time from various applications such as wireless sensor networks, Internet of Things services, and social network services. For this reason, to develop an efficient method have become one of significant issues in order to discover useful information from such data by processing and analyzing them and employing the information for better decision making. Since stream data are generated continuously and rapidly, there is a need to deal with them through the minimum access. In addition, an appropriate method is required to analyze stream data in resource limited environments where fast processing with low power consumption is necessary. To address this issue, the sliding window model has been proposed and researched. Meanwhile, one of data mining techniques for finding meaningful information from huge data, pattern mining extracts such information in pattern forms. Frequency-based traditional pattern mining can process only binary databases and treats items in the databases with the same importance. As a result, frequent pattern mining has a disadvantage that cannot reflect characteristics of real databases although it has played an essential role in the data mining field. From this aspect, high utility pattern mining has suggested for discovering more meaningful information from non-binary databases with the consideration of the characteristics and relative importance of items. General high utility pattern mining methods for static databases, however, are not suitable for handling stream data. To address this issue, sliding window based high utility pattern mining has been proposed for finding significant information from stream data in resource limited environments by considering their characteristics and processing them efficiently. In this paper, we conduct various experiments with datasets for performance evaluation of sliding window based high utility pattern mining algorithms and analyze experimental results, through which we study their characteristics and direction of improvement.

An Extended Frequent Pattern Tree for Hiding Sensitive Frequent Itemsets (민감한 빈발 항목집합 숨기기 위한 확장 빈발 패턴 트리)

  • Lee, Dan-Young;An, Hyoung-Geun;Koh, Jae-Jin
    • The KIPS Transactions:PartD
    • /
    • v.18D no.3
    • /
    • pp.169-178
    • /
    • 2011
  • Recently, data sharing between enterprises or organizations is required matter for task cooperation. In this process, when the enterprise opens its database to the affiliates, it can be occurred to problem leaked sensitive information. To resolve this problem it is needed to hide sensitive information from the database. Previous research hiding sensitive information applied different heuristic algorithms to maintain quality of the database. But there have been few studies analyzing the effects on the items modified during the hiding process and trying to minimize the hided items. This paper suggests eFP-Tree(Extended Frequent Pattern Tree) based FP-Tree(Frequent Pattern Tree) to hide sensitive frequent itemsets. Node formation of eFP-Tree uses border to minimize impacts of non sensitive frequent itemsets in hiding process, by organizing all transaction, sensitive and border information differently to before. As a result to apply eFP-Tree to the example transaction database, the lost items were less than 10%, proving it is more effective than the existing algorithm and maintain the quality of database to the optimal.

Anomalous Event Detection in Traffic Video Based on Sequential Temporal Patterns of Spatial Interval Events

  • Ashok Kumar, P.M.;Vaidehi, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.169-189
    • /
    • 2015
  • Detection of anomalous events from video streams is a challenging problem in many video surveillance applications. One such application that has received significant attention from the computer vision community is traffic video surveillance. In this paper, a Lossy Count based Sequential Temporal Pattern mining approach (LC-STP) is proposed for detecting spatio-temporal abnormal events (such as a traffic violation at junction) from sequences of video streams. The proposed approach relies mainly on spatial abstractions of each object, mining frequent temporal patterns in a sequence of video frames to form a regular temporal pattern. In order to detect each object in every frame, the input video is first pre-processed by applying Gaussian Mixture Models. After the detection of foreground objects, the tracking is carried out using block motion estimation by the three-step search method. The primitive events of the object are represented by assigning spatial and temporal symbols corresponding to their location and time information. These primitive events are analyzed to form a temporal pattern in a sequence of video frames, representing temporal relation between various object's primitive events. This is repeated for each window of sequences, and the support for temporal sequence is obtained based on LC-STP to discover regular patterns of normal events. Events deviating from these patterns are identified as anomalies. Unlike the traditional frequent item set mining methods, the proposed method generates maximal frequent patterns without candidate generation. Furthermore, experimental results show that the proposed method performs well and can detect video anomalies in real traffic video data.

Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach (발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.55-75
    • /
    • 2010
  • Sequential pattern mining aims to discover interesting sequential patterns in a sequence database, and it is one of the essential data mining tasks widely used in various application fields such as Web access pattern analysis, customer purchase pattern analysis, and DNA sequence analysis. In general sequential pattern mining, only the generation order of data element in a sequence is considered, so that it can easily find simple sequential patterns, but has a limit to find more interesting sequential patterns being widely used in real world applications. One of the essential research topics to compensate the limit is a topic of weighted sequential pattern mining. In weighted sequential pattern mining, not only the generation order of data element but also its weight is considered to get more interesting sequential patterns. In recent, data has been increasingly taking the form of continuous data streams rather than finite stored data sets in various application fields, the database research community has begun focusing its attention on processing over data streams. The data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. In data stream processing, each data element should be examined at most once to analyze the data stream, and the memory usage for data stream analysis should be restricted finitely although new data elements are continuously generated in a data stream. Moreover, newly generated data elements should be processed as fast as possible to produce the up-to-date analysis result of a data stream, so that it can be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the correctness of its analysis result by allowing some error. Considering the changes in the form of data generated in real world application fields, many researches have been actively performed to find various kinds of knowledge embedded in data streams. They mainly focus on efficient mining of frequent itemsets and sequential patterns over data streams, which have been proven to be useful in conventional data mining for a finite data set. In addition, mining algorithms have also been proposed to efficiently reflect the changes of data streams over time into their mining results. However, they have been targeting on finding naively interesting patterns such as frequent patterns and simple sequential patterns, which are found intuitively, taking no interest in mining novel interesting patterns that express the characteristics of target data streams better. Therefore, it can be a valuable research topic in the field of mining data streams to define novel interesting patterns and develop a mining method finding the novel patterns, which will be effectively used to analyze recent data streams. This paper proposes a gap-based weighting approach for a sequential pattern and amining method of weighted sequential patterns over sequence data streams via the weighting approach. A gap-based weight of a sequential pattern can be computed from the gaps of data elements in the sequential pattern without any pre-defined weight information. That is, in the approach, the gaps of data elements in each sequential pattern as well as their generation orders are used to get the weight of the sequential pattern, therefore it can help to get more interesting and useful sequential patterns. Recently most of computer application fields generate data as a form of data streams rather than a finite data set. Considering the change of data, the proposed method is mainly focus on sequence data streams.