
ETRI Journal, Volume 30, Number 3, June 2008 Thi Hong Nhan Vu et al. 421

In this paper, we offer a new technique to discover
frequent spatiotemporal patterns from a moving object
database. Though the search space for spatiotemporal
knowledge is extremely challenging, imposing spatial and
timing constraints on moving sequences makes the
computation feasible. The proposed technique includes
two algorithms, AllMOP and MaxMOP, to find all
frequent patterns and maximal patterns, respectively. In
addition, to support the service provider in sending
information to a user in a push-driven manner, we
propose a rule-based location prediction technique to
predict the future location of the user. The idea is to
employ the algorithm AllMOP to discover the frequent
movement patterns in the user’s historical movements,
from which frequent movement rules are generated.
These rules are then used to estimate the future location of
the user. The performance is assessed with respect to
precision and recall. The proposed techniques could be
quite efficiently applied in a location-based service (LBS)
system in which diverse types of data are integrated to
support a variety of LBSs.

Keywords: Spatiotemporal data mining, movement
pattern, location prediction, location-based services.

Manuscript received Aug. 24, 2007; revised Dec.31, 2007.
This work was supported by the IT R&D program of MIC/IITA, Rep. of Korea [2006-S-

022-01, Development of USN Middleware Platform Technology] and by a grant
(#07KLSGC02) from Cutting-Edge Urban Development-Korean Land Spatialization
Research Project funded by Ministry of Construction & Transportation of the Korean
government.

Thi Hong Nhan Vu (email: nhanvth@yahoo.com) and Jun Wook Lee (phone: +82 42 860
5892, email: junux@etri.re.kr) are with IT Convergence Technology Research Laboratory,
ETRI, Daejeon, Rep. of Korea.

Keun Ho Ryu (email: khryu@dblab.chungbuk.ac.kr) is with the School of Electrical and
Computer Engineering, Chungbuk National University, Cheongju, Rep. of Korea.

I. Introduction

Convergence of location-aware devices, wireless
communication, and geographic information system
functionalities enables the deployment of new services such as
location-based services (LBSs). Moving users of e-services
involving location information disclose their positional
information to the services, which in turn use this with other
information to provide functionalities. Services accumulate
data derived from the users’ requests and integrate this with
other user information in a multidimensional database [1], [2].
Our work concentrates on the development of data mining
techniques for knowledge discovery and delivery in LBSs.

The data mining field dates back almost 20 years [3], [4].
However, the field of spatiotemporal data mining, which is
extremely challenging due to the exponential explosion of the
search space for knowledge, is still in its infancy [4], [5]. The
algorithms proposed in [5] discover spatiotemporal periodic
patterns from trajectories of equal length, which are then
exploited in an index structure to support the execution of
spatiotemporal queries. We are concerned with trajectories of
random length and the problem of imprecise sampled points. In
addition, DFS_MINE was introduced in [6] to discover
spatiotemporal patterns for weather prediction. This paper
studied the relationships between time-varying attributes for
fixed locations, but it did not consider how the algorithm could
be applied to moving object mining. In this case, it is necessary
to seek the relationships between stable attributes of objects
with varying-time locations. There have also been many
studies on location prediction [7], [8]. The study which is the
most relevant to ours is [8], in which the UMP algorithm was
proposed. However, the new support value determining
method of [8] prevents the pruning of unnecessary candidates.

Spatiotemporal Pattern Mining Technique for
Location-Based Service System

 Thi Hong Nhan Vu, Jun Wook Lee, and Keun Ho Ryu

422 Thi Hong Nhan Vu et al. ETRI Journal, Volume 30, Number 3, June 2008

Timestamps are not associated with rules, so when the user will
enter a future location cannot be known. Moreover, the fixed
cell in the network cannot be adapted to the thematic partition
space considered here.

In this paper, towards the goal of reducing the error in the
observations of a trajectory, the trajectory is reconstructed by
re-sampling its positions. The proposed technique includes two
algorithms, AllMOP and MaxMOP, to find all frequent
movement patterns and maximal patterns, respectively.
Though this task is extremely time-consuming, exploiting the
spatiotemporal proximity feature of the problem domain
makes the computation feasible. Because objects move in a
thematically decomposed space, we take into account the
concept of the graph and the transitive property of the similarity
measurement of paths in a graph during the process of
candidate generation, this helps to reduce the number of pattern
candidates. Moreover, to control the density of the pattern
regions and automatically adjust the shape and size of the
regions, we employ a grid-based clustering technique.
Efficiency is judged in comparison with the grid-based
technique using the GSP algorithm [7] and DFS_MINE [6]
with respect to the discovered knowledge, execution time, and
memory requirement. The final goal is to support the
information dissemination of the LBS system in a push-driven
fashion. We propose a rule-based location prediction (RLP)
algorithm to predict the future location of a moving user based
on movement rules. Movement rules are generated from the
movement patterns that are discovered from the user’s
historical movements using the algorithm AllMOP. The
performance of this method is assessed with respect to
precision and recall and compared to the previous method,
UMP. The prediction of our technique is more precise than that
of UMP. Using the proposed algorithm to predict future
location and the algorithms to discover frequent movement
patterns, the LBS system is able to efficiently provide users
with traffic LBS and to send information to customers in a
push-driven manner.

II. Problem Definition

Definition 1: Trajectory. The trajectory of a moving object
with identifier oj is defined as a finite sequence of points {(oj, p1,
vt1), (oj, p2, vt2),…, (oj, pn, vtn)} in the X × Y × T space, where
point pi is represented by coordinates (xi, yi) at the sampled time
vti for 1≤i ≤n.

Assume that there are N distinct moving objects, DB is defined
as the union of a time series of positions

1

N
jj

DB D
=

=∪ , where

Dj is a time series containing quadruples (oj, xj
i, yj

i, vti) for
1 ≤ j ≤ N and 1 ≤ i.

The spatial organization of the reference plane M ⊆ R is
represented as a set of regions. The region is related to a
specific thematic interpretation of space, so, M is represented as
a finite set of regions {a1,…,an} such that 1 1

n
i a M=∪ = with

ai∩aj=φ and i≠j. The moving possibility of an object from
region to region is represented by a directed graph. After
partitioning M, we get a hierarchical structure as introduced in
[3]. However, in this study, we assume that a region of the
lower level is fully contained in a region of the higher level.

Let T be the maximal timestamp among timestamps of the
trajectories in the moving object database D. Let oj

i denote the
position of the moving object oj, for 1 ≤ j ≤ N at timestamp vti
for 1 ≤ i ≤ T. The trajectory of an object can be defined by the
sequence of points oj

1 oj
2…oj

K for 1 ≤ K ≤ T.
Definition 2: Moving sequence. Given a minimal temporal

interval τ and the trajectory’s lifespan max_span [start, end], a
moving sequence is a list of temporally ordered region labels
ms = <(a1,t1), (a2,t2),…,(aq,tq)> , where ai contains oj

i, ti – ti-1 ≥ τ,
and tq - t1 ≤ max_span.end – max_span.start, for q ≤ T and 1≤ i ≤ q.

A sequence composed of k regions is denoted as a k-pattern.
For example <(R1,t1),(R2,t2),(R2,t3)> is a 3-pattern.

Definition 3: Subsequence. For a moving sequence S1, if
region a1 occurs before a2, it is denoted as a1 < a2. S1 is a
subsequence of S2 if there is a one-to-one temporally order
preserving function f that maps regions of S1 to those of S2 such
that for every ai ∈S1: ai ∩ f(ai) ≠∅, if ai < aj then f(ai) < f(aj),
and tai+1-tai = tf(ai+1)-tf(ai).

For instance, in Fig. 3, sequence <(R123, t1), (R23, t3)> is a
subsequence of <(R13, t1), (R01, t2), (R23, t3)> since,
sequentially, R123∩R13≠φ at time t1 and at time t3 region R23 is
the same.

Definition 4: Frequent pattern. A trajectory is said to
comply with moving sequence ms if, for each region ai ∈ ms at
vti, the point oj

i of the trajectory is in ai at the same time. The
support of sequence ms can be defined as the number of
trajectories in DB complying with it. If ms has support(ms) ≥
min_sup, where min_sup is a user-specified minimum support
threshold, then ms is defined as a frequent pattern. A frequent
pattern is maximal if it is not a subsequence of any other
sequences.

To control the density of the pattern region ai, a density-
based partitioning method is exploited. Each region ai of
pattern ms is dense if the set of positions Ai = {oj

i | oj
i ∈ ai}

forms a dense cluster. According to [9], a dense cluster is
defined by two parameters r and MinPts points. We apply a
modified version of the partitioning method in the
consideration of a multi-level spatiotemporal grid. Progressing
from finer to coarser, locally dense cells can be found, which
later can be combined with dense nearby grid cells to form
clusters. The size of cells at the lowest level is decided based on

ETRI Journal, Volume 30, Number 3, June 2008 Thi Hong Nhan Vu et al. 423

the imprecision degree of the moving points, which will be
presented later. In our case, MinPts is equal to the value
min_sup*N. Therefore, if all regions in ms are dense, then ms is
frequent.

Problem definition 1. Given the maximum speed vmax of a
moving user, a moving object database DB, a reference plane
M⊆R2, directed graph graph, a time interval max_span[start,
end] imposed on the lifespans of trajectories, and a minimum
support min_sup, the problem is to discover frequent
movement patterns in DB.

The second part of this study is concerned with movement
rules discovered from the historical movements of the
customer, which are used to predict the future location of a
moving customer. The rule is defined as follows. A movement
rule has the form rul = A B in which A and B are two
frequent movement patterns. The part of the rule before the
arrow is the antecedent, and the part after the arrow is the
consequent of the rule. As we describe later, the movement rule
rul is generated from the frequent movement pattern A∪B,
which was just defined. The confidence of the rule rul is
determined using the following formula:

 ()()
()

support A Bconfidence rul
support A

∪
= (1)

in which the support of the pattern A ∪B is the support of the
rule. It is available after the frequent movement pattern
discovering process, but the support of pattern A is not, and we
have to determine it. It is notable through the process of
discovering frequent patterns the sizes of pattern regions are
reserved or get smaller when the length of the pattern increases.
Therefore, the support of the antecedent A with length k is
determined by accessing the set. All frequent k-patterns, Fk, are
kept to find a pattern Pk whose regions coincide in temporal
order or contain the regions of A. We then have its support,
which is either the support of Pk or the number of objects in the
overlapped region of some pair of regions at a specific time
point belonging to Pk and A. Note that if just one region at time
t in pattern A coincides with another region at time t in Pk, then
the support of A is the same as that of Pk.

If the confidence value is at least a predefined threshold
min_conf, then the rule is said to be frequent and confident.

Problem definition 2. Given the maximum speed vmax of a
moving user, the historical trajectory of the user is a time
series of positions denoted by DB = {(pi, vti),1 ≤ i ≤ n}
sampled at the time period ∆t, a reference map M⊆R2, the
maximal timing constraint max_gap, minimum support
min_sup, minimum confidence min_conf. The problem is to
discover all frequent movement rules in DB satisfying both
min_sup and min_conf.

III. Algorithms for Discovering Movement Patterns

We provide a function MINE_MOP to allow the adoption of
the type of patterns we wish to obtain with the same input.
Before processing, the moving object database DB is sorted
according to object identifier oj, and then it is sorted by
timestamp vt. Next, the trajectories whose lifespans, denoted by
[vts, vte], are ‘during’ the given time interval max_span[start,
end] are extracted from DB. The temporal operator during was
introduced in [10].

1. Trajectory Reconstructions

The sampling error across time was proved to be an error
ellipse and a circle in the worst case [11], which is the case we
take into account in this research. To make the operations more
efficient, we operate on its minimum bounding rectangle,
which is also the cell in the reference plane explained here. For
a grid threshold r, and without considering time, reference
plane M is decomposed into an nx×ny array of equal-sized cells.
When time is considered, plane M is decomposed into uniform
spatiotemporal units. A spatiotemporal unit is defined as the
minimum spatial and temporal extent of interest. Each object
stays in a cell for a certain time interval τ (or minimum interval
min_gap here). Because the cell is used for storage, we have to
decide the bounds of spatial and temporal extent.

For example, given a sampling rate of 12, the result of re-
sampling the trajectories in Fig. 1 shows that cell d[2,3] in Fig.
1(a) is frequent for cell size r and re-sampling rate ρ = 6.
However, for smaller cell size r/2 and re-sampling rate ρ = 4,
the points in that location are distributed into two smaller cells
d[5,6] and d[5,7] shown in Fig. 1(b), and both are infrequent.

Actually, the object’s maximum velocity vmax and the chosen
re-sampling ρ affect this choice. Re-sampling rate and cell size
must be selected so that the object’s movement produces at
least one hit in each cell it visits. As a rule of thumb, parameter
r must be chosen such that (vmax/ρ)≪(r/ 2). In addition,
temporal extent τ is determined a priori and may change

Fig. 1. Spatiotemporal extent vs. frequent cells.

0 1 2 3 4 5 6 70 1 2 3

0

1

2

3

0
1
2
3

4
5
6

7
d[2,3] d[5,7]

d[5,6]

(a) Trajectory with re-sampling
rate ρ = 6

(b) Trajectory with re-sampling
rate ρ = 4

424 Thi Hong Nhan Vu et al. ETRI Journal, Volume 30, Number 3, June 2008

depending on the application. As a rule of thumb, it should be
chosen such that 1≪ρτ, as ρτ is a measure for hit number
expectation per cell [12].

The object space having the origin (x0,y0) is represented as a
regular grid and stored in an array D[1:nx,1:ny]. If [Sx, Sy] is the
two-dimensional size of the search space, each cell has size
[Sx/nx, Sy/ny]. For point P(x,y), the identifier of the cell Dij, to
which P belongs, is determined by i=(x-x0)/(Sx/nx)+1 and
j=(y-y0)/(Sy/ny)+1. Every trajectory is converted into a set of
cell labels Dij, each of which is associated with a timestamp.

2. Trajectory Generalization

We assume multiple hits in a cell will count just once for a
trajectory, so we have to generalize the trajectories. For a
movement, we eliminate all consecutive points lying in the
same cells and keep only the first point.

Assume that after projecting the points of trajectories in DS
into cells, we obtain the result presented in Fig. 2(a). We
remove the second points in the cells D20 and D12. The final
results are shown in Fig. 2(b).

Fig. 2. Result of generalized trajectories in the database.

oid vt x y location
2006/1/30/ 7:00 10 0 D10
2006/1/30/ 7:30 20 5
2006/1/30/ 8:00 25 7

D20

2006/1/30/ 8:30 35 9 D30
2006/1/30/ 9:00 33 13 D31

o1

2006/1/30/ 9:30 28 13 D21
2006/1/30/ 7:00 18 12 D11
2006/1/30/ 7:30 16 22
2006/1/30/ 8:00 16 29

D12 o2

2006/1/30/ 8:30 18 35 D13

oid vt x y location
2006/1/30/ 7:00 10 0 D10
2006/1/30/ 7:30 20 5 D20
2006/1/30/ 8:30 35 9 D30
2006/1/30/ 9:00 33 13 D31

o1

2006/1/30/ 9:30 28 13 D21
2006/1/30/ 7:00 18 12 D11
2006/1/30/ 7:30 16 22 D12

o2

2006/1/30/ 8:30 18 35 D13

(a) Moving points stored in
pages Dij

(b) Generalized trajectories

3. Dataset Transformation

Physically, the data structure of each cell in the moving
sequence is constructed in the form of (Dij, oj, vti), in which Dij
contains a pointer, which indicates the page D[i,j], where the
position of object oj at time vti is stored. Ultimately, the moving
object dataset DS is converted into a set MS of moving
sequences, each with distinct identifiers oj.

4. Algorithm AllMOP

Discovering all frequent patterns is accomplished by the
algorithm AllMOP, shown in Fig. 6. It takes the set of moving
sequences MS from the previous step as input. The algorithm
makes multiple passes to find all frequent patterns.

A. Finding Frequent 1-Patterns

It is impossible to apply techniques such as GSP or
DFS_MINE directly because the shape and size of a region in
one pattern is discovered and adjusted automatically at each
pass. Therefore, we have to use the following procedure. First,
a dataset of moving objects is decomposed into groups of
moving points, each Ai = {oj

i | oj
i ∈ ai,} for one timestamp vti

(1 ≤ i ≤ T). Frequent 1-patterns are dense regions (or clusters)
that are discovered from the sets Ai. To find them, for each
timestamp vti, we scan the set MS to count cells and get
frequent ones. Next, consecutive dense cells belonging to the
same region ai are merged into larger regions, which might be
merged continuously to form clusters. They are then
maintained in a set F1, called frequent 1-patterns. The points
lying in the sparse cells are assigned to the found clusters by
applying range queries with diameter (r/ 2). The points that
do not belong to any cluster are called outliers. They are
excluded from the cells as soon as they are found. The empty
cells are discarded simultaneously.

Figure 3(a) shows a set of moving object trajectories in a
two-dimensional space after the step of trajectory
generalization. We assume that the maximal timestamp T is 5,
and the support threshold, min_sup, is 2.

In this case, the spatial organization consists of five regions
denoted by Rj (0 ≤ j ≤ 5). The numbers that are marked in each
region Rj index the cells belonging to that region. That is, the
cell indexed by number 1 in region R1 is denoted as R11).

Moving points are projected into cells, which have pointers
that indicate pages, one for each cell. In the figure, the pointers
are represented by the dashed lines. As seen in Fig. 3(b), the
starting point of object 1 at time t1 logically lies in the cell R13
and is stored in the element D[2,2]. Its next position at time t2 is
in the cell R01 and is stored in D[3,2]. Next, dense regions are
found. Figure 4(a) shows the groups of moving points obtained
after decomposing the trajectories of Fig. 3(a). Consider the

Fig. 3. Moving trajectories used in the example.

R11 R12
R13

R1

R1

R2

R5

1 2 3 1 2

3

1 2 3

2 3 1 2 3

321

R0

R3

R4

D[1,2] D[2,2] D[2,1] D[3,1] D[4,1] D[5,1] …

oid Moving sequence

1 <(R13,t1),(R01,t2)>

2 <(R13,t1),(R01,t2),(R32,t3)>

3 <(R12,t1),(R02,t2),(R31,t3),(R41,t4),(R52,t5)>

4 <(R01,t2),(R23,t3),(R31,t4)>

5 <(R01,t2),(R23,t3),(R31,t4)>

6 <(R01,t2),(R23,t3),(R33,t4)>

7 <(R01,t2),(R23,t3),(R33,t4)>

8 <(R12,t1),(R23,t2),(R31,t3)>

9 <(R42,t3),(R32,t4)>

10 <(R42,t3),(R32,t4)>

11 <(R32,t4),(R03,t5)>

12 <(R32,t4),(R03,t5)>

Regions R1 is composed of three cells

(a) Mapped trajectories (b) Moving sequences

ETRI Journal, Volume 30, Number 3, June 2008 Thi Hong Nhan Vu et al. 425

Fig. 4. Example of finding frequent 1-patterns.

1-pattern

outlier

outlier
R123 R01

R32
R33

R31

R42

R23

t1

Pages D[1,2] D[2,2] D[2,2] D[3,1] D[4,1] D[5,1]

X

t2 t3 t4 t4 t4
…

sup
<(R123,t1)> 4
<(R01,t2)> 6
<(R23,t3)> 4

<(R31,t3)> 2

<(R42,t3)> 2
<(R3,t4)> 8

<(R03,t5)> 2

(a) Finding dense regions (b) 1-patterns F1

Y

t2
t3
t4
t5

example of finding dense regions at time t4. The count of cell
R41 is just one less than min_sup, so it is discarded, and the
only point in it is an outlier. We determine three dense cells,
R31, R32, and R33, which refer to three different pages, namely,
D[3,1], D[4,1], and D[5,1], as indicated by the pointers shown
in Fig. 2(a). Since all of them are neighboring cells and are
contained in the same region, R3, they are merged to form one
cluster, R3. However, R3 still points to those three pages
corresponding to the cells comprising it. Frequent 1-patterns F1
are shown in Fig. 4(b).

B. Finding Frequent k-Patterns (k ≥ 2)

A candidate 2-pattern is created by merging a pair of
frequent 1-patterns in the consideration of the time constraint.
Let (ai,vti) and (aj,vtj) be two 1-patterns in F1. A candidate 2-
pattern, for example <(ai,vti), (aj,vtj)>, is created if vti>vtj and
the regions ai and aj are neighbors because an object can only
move into its neighboring regions.

For k > 2, candidate patterns are generated as follows. Given
a set of frequent (k-1)-patterns, Fk-1, the candidates for the next
pass are created by making a candidate for the next pass is
created by merging a pair of (k-1)-patterns in Fk-1. Pattern
s1=<(a1,vt1), (a2,vt2),…, (ak-1,vtk-1)> joins with pattern s2 =
<(b2,vt’2), (b3,vt’3),…, (bk,vt’k)>. The candidate cand is
produced by the merging of s1 and s2 if the following
conditions are satisfied: after the first region of s1 and the last
region of s2 are dropped, vti = vt’i and ai ∩bi ≠ φ (for 2 ≤ i ≤ k-1).

To facilitate fast and effective candidate generation, MBRs
of the pattern regions are exploited. If all intersections of those
pairs are non-empty, the created candidate pattern will be in the
form of cand = <(a1,vt1), (c2,vt2),…, (ck-1,vtk-1), (bk,vt’k)>, in
which c2 = MBR(a2) ∩ MBR(b2),…, ck-1 = MBR(ak-1) ∩
MBR(bk-1). Then, we join the points in all regions of cand with
criteria Ri.oj = Rj.oj (or cand = Ri Ri.o

j
 = Rj.o

j
 & Ri.vti = Rj.vtj Rj).

The support value of a candidate pattern is the number of
objects oj that comply with the candidate patterns.

Next, the regions of the candidate need to be validated
because they may no longer be dense after the join operation. If

Fig. 5. Validating candidate patterns.

R123 R01

R01R13

R23

R23 R31

R3

R32 R33

Joining

(a) Joining and adjusting size of
regions

(b) Clustering, resulting in new
frequency patterns

the support value is at least min_sup, then the regions of a
candidate will be re-clustered. For a new cluster, a pattern will be
created and the sizes of the pattern’s regions are adjusted as well.
For instance, consider the candidate pattern <(R123,t1), (R01,t2)>
shown in Fig. 5(a). After joining the points of R123 with those
of R01, the size of cluster R01 is still maintained, but the size of
cluster R123 is reduced to R13. Second, consider the candidate
pattern <(R23,t3), (R3,t4)> depicted in Fig. 5(b). After joining
the points of R23 with those of R3, the region R23 is still the
same, but the remaining points of R3 are grouped into two
clusters R31 and R33. Therefore, two new patterns are created,
namely, <(R23,t3), (R31,t4)> and <(R23,t3), (R32,t4)>.

Finally we consider the candidate pruning method. A
candidate k-pattern will be discarded if it has an infrequent
subpattern. To tackle this problem, we keep a list of all minimal
infrequent patterns in the memory MinInfreqList as introduced
in [6]. Initially, MinInfreqList contains all infrequent 2-patterns.
When a new candidate pattern cand is generated, we check
whether it is a superpattern of any pattern in this list. If it is, it

Fig. 6. Algorithm for finding all frequent patterns.

Algorithm AllMOP()
For every 1-pattern (Ri, ti)∈ F1 //generating 2-patterns

For (Rj, tj) ∈ F1 && i ≠ j //assume vti > vtj
if (∃ an edge in graph connecting Ri to Rj)) then

C2 C2 ∪ <(Ri, ti), (Rj, tj)>
For all candidate 2-patterns <(Ri, ti),(Rj, tj)> ∈ C2

cand = Ri Ri.o
j
= Rj.o

j
 Rj;

set_new_regions Clustering points in cand;
If |set_new_regions| ≠φ then for each new region Ri’

F2 F2 ∪ <(Ri’, ti), (Rj’, tj)>
else Insert(MinInfreqList, cand);

For (k = 3; Fk-1 ≠ φ; k++)
For each pair Pi & Pj ∈ Fk-1

cand joining the pair (Pi, Pj) after checking MBR-
intersection

if (cand ≠ φ) then Ck Ck ∪ cand;
Prune candidates by looking for a subpattern in

MinInfreqList;
If such a pattern exists, then update MinInfreqList;

// determining support the remaining candidates
For each cand ∈Ck

cand = Pi Pi.o
j
= Pj.o

j
 & Pi.vti= Pj.vtj Pj;

if (|objects oj complying with cand| ≥ min_sup)
set_new_regions reclustering points in the regions of cand;

If |set_new_regions| ≠φ, then for each new region Ri’
Fk Fk ∪ new_pattern;

else Insert (MinInfreqList, cand);
FMOP set of all frequent sequences in Fk;
return FMOP;

426 Thi Hong Nhan Vu et al. ETRI Journal, Volume 30, Number 3, June 2008

will be discarded at once, without making a temporal join on
the sets of points of the candidate pattern regions.

5. Algorithm MaxMOP

The algorithm MaxMOP mines maximal patterns, which
could save a lot of space and maintain all of the necessary
information. In terms of the data structure, in addition to
MinInfreqList, which is used for candidate pruning as
previously mentioned, we need two other lists: MaxFreqList to
store the maximal frequent patterns in the memory, and
CandList to contain the patterns to prepare for the generation of
new patterns. Both MaxFreqList and CandList are initialized
with frequent 2-patterns; however, MinInfreqList is initialized
with infrequent 2-patterns. MaxFreqList is updated with a new
candidate pattern, cand, if all of the following three conditions
hold: cand is not in the MaxFreqList, cand is found to be
frequent, and cand is not a subpattern of any pattern in this list.
If the three conditions hold, cand is inserted into MaxFreqList.
After insertion, we remove all subpatterns of cand from the list.
The result of this algorithm is kept in MaxFreqList.

IV. Predicting Future Location of Moving User

The purpose of the algorithm is to predict the location of a
moving customer based on movement rules. In addition to re-
sampling the sampled points, it is necessary to transform the
time series of locations into moving sequences. A moving
sequence is created if the time difference between two
consecutive points is greater than max_gap. Next, the AllMOP
algorithm takes the set MS of moving sequences as input, and a
directed graph, min_sup, is called to discover all frequent
movement patterns.

Assume a movement pattern P = <(l1, vt1), (l2, vt2),…,(lk, vtk)>,
where k>1. All possible rules or the candidate rules that can be
derived from such a pattern are the following: <(l1, vt1)>
<(l2, vt2),…,(lk, vtk)>; <(l1, vt1), (l2, vt2)> <(l3, vt3),…,(lk, vtk)>;
…;<(l1, vt1), (l2, vt2),…,(lk-1, vtk-1)> <(lk, vtk)>. The confidence

Fig. 7. Algorithm for estimating future location.

Algorithm RLP()
PredLoc φ; t 1;
For each rule r = <(a1, vt1),…(ai-1, vti-1)> < (ai, vti),…(ak, vtk) > ∈ Rules

If (when mapping P to r the time order is preserved and the
regions of {l1, l2,…,lj-1} successively have nonempty
overlapping with the regions of {a1, a2…,ai-1} & (lj-1 overlaps ai-1)

MatchingRule MatchingRule ∪ r;
NextLocArray [t++] (<ai, vti>, r.support +

r.confidence);
NextLocArray sort(NextLocArray);
PredLoc NextLocArray[1];

return PredLoc;

values of the movement rules are computed using (1). Any rule
whose confidence is higher than a predefined confidence
threshold min_conf is selected. In this way, we discover all
frequent movement rules from a set of movement patterns.

With the movement rules discovered, the future location of a
moving object can be estimated. Assume a user has followed
the path P = <(l1, vt1), (l2, vt2),…,(lj-1, vtj-1)> up to now. The
pseudo-code of the algorithm RLP is shown in Fig. 7. The
algorithm searches for the matching rules. Their antecedents
preserve the time order when mapping them to P and have
non-empty overlapping with the regions of P in that order. The
last location in the antecedent overlaps lj-1 as well. The first
location of the consequent of such a rule and the value that is
the sum of the confidence and the support values of the rule are
stored in an array. This array is then sorted in descending order
according to the sum of support and confidence values. The
location and the timestamp in the first tuple is the next location
the user will enter at that time.

V. Implementation and Performance Analysis

In this section, we present experiments that we carried out to
evaluate the performance of the proposed techniques.

1. Evaluation of AllMOP and MaxMOP

We validated the efficiency of the proposed algorithms under
diverse settings of parameters and datasets and compared them
with grid-based technique using the GSP and DFS_MINE
algorithms.

A. Synthetic Dataset Generation

To evaluate the efficiency of the proposed algorithms we
built a dataset generator as follows.

Prior to producing trajectories, the regions on the map M for
the maximal movement patterns were decided. Then, we
determined the directed graph for this map, a bidirected graph
in this case. Assume that P is a generated pattern. A set of
trajectories with lifespan in timestamp (vtt, 1 ≤ t ≤ T) is created
on the space. For each region of P, we assigned a set of points
at a specific timestamp vtt on those trajectories. It is important
that the distance between two points on the trajectories are set
such that it is proportional to the minimum temporal extent τ,
sampling rate Δt in the pattern, as well as object’s velocity.
Moreover, we guarantee that the positions of the different
objects arriving at the same location and at the same time will
not coincide. This means that they are far enough apart, that is,
α = r / (min_sup * N). For an object’s movement, it is
necessary to determine if it has a random trajectory or if it
complies with some frequent pattern. If its movement has a

ETRI Journal, Volume 30, Number 3, June 2008 Thi Hong Nhan Vu et al. 427

random trajectory, the moving directions of its points are
changed and the distance between the two points is also
distorted. Otherwise, a maximal pattern P is selected and the
moving object’s trajectory is produced in the following way.
Assume that the object’s current point is pi-1, and the object
moves to the next point pi. If the time difference between the
two pattern regions corresponding to pi and pi-1 is a maximum
of ρ, then pi of the trajectory is generated in its corresponding
region and within α range. If not, pi is generated randomly but
such that the movement directs the next pattern region. A
random trajectory is determined by a random direction with
respect to the previous location and a random distance.

A map with the size of [1000, 1000] was partitioned into
regular regions 250 m long and 125 m wide, that is, the map
consists of 32 regions, denoted by ai. We assumed that all of the
objects in the map would travel at the maximum velocity vmax of
11 m/s, and the sampling rate, Δt, was 8. Throughout the
experiment, we chose the same values for the re-sampling rate, ρ,
and the temporal extent, τ. In accordance with such a setting of
space, if the space is a 16×16 grid and τ is 2, then each region ai
is composed of 8 cells Dij with size r =62.5. The moving objects
were generated such that each object would hit four cells of the
region ai and when we aggregated them using the higher
resolution r = 125 and τ = 4 (in this case, the region ai consisted
of two cells with this size) there were two pairs of consecutive
points falling into two cells with that larger size. On average,
70% of the object movements of the generated dataset had the
maximal length of T. On average, 30% of those trajectories
follow the same path. The remaining trajectories of the dataset
(30%) are called random trajectories. The generated dataset,
D500_T40_L10, includes 500 trajectories. The maximal
timestamp, T, is 40, and the maximal pattern length, L, is 10.

B. Performance of AllMOP and MaxMOP

In all tests presented here, we applied the cell size r = 125
and the temporal extent τ = 4. The results show that for
constant dataset size, the execution time of AllMOP gradually
increases with the change of trajectory length (see Fig. 9). We
obtained the similar results for various database sizes with the
same maximal length L. This is because the number of frequent
patterns increases as the min_sup value decreases, which leads
to longer execution time. We can affirm that AllMOP is
scalable because the number of objects increases from 500 to
3,000 (a factor of six) with a fixed maximal length, while the
required time increases by a factor of less than six. Our other
tests also returned the same results. Figure 9 shows a
comparison of our two algorithms, AllMOP and MaxMOP. We
used a fixed maximal timestamp T = 96 and min_sup = 7% for
the datasets. Even though MaxMOP is little more time-

Fig. 8. Execution time vs. data size.

0
20
40
60
80

100
120
140
160

21% 9% 7% 3%
min_sup

E
xe

c.
 ti

m
e

(s
)

D500_T40_L10 D1000_T_40_L10 D3000_T_40_L10

Fig. 9. AllMOP vs. MaxMOP with 3000 trajectories.

0

500

1000

1500

2000

10 14 18 20 22 23 24

maximal length L of patterns

E
xe

c.
tim

e
(s

)

MaxMOP AllMOP

consuming than AllMOP, it maintains only maximal patterns
while AllMOP causes memory overflow. The cost of MaxMOP
for mining maximal patterns is higher than that of AllMOP
because MaxMOP includes an additional operation for pattern
updating. However, its additional cost is not prohibitive.

C. Comparison with GSP and DFS_MINE

The following experiments were performed on the dataset
D3000_T40_L10 to assess the effectiveness of our techniques
compared with the grid-based technique using GSP and
DFS_MINE.

D. AllMOP vs. GSP

We used the dataset D3000_T40_L10 and considered both
small cell size and large cell size.

For a small cell size (r = 62.5), even though GSP is very fast,
moving points are split into different cells, so frequent cells are
missed, which leads to longer frequent patterns being missed.
As seen in Fig. 10(a), for the min_sup less than 9%, long
patterns are missed. The cost of AllMOP is higher than that of
GSP. The time required to scan the dataset of GSP to count the
supports of candidate patterns, which are reduced after each
step, is shorter than the time required to join and adjust the size
of pattern regions with AllMOP (Fig. 10(a)).

For a larger cell size (r = 125), GSP discovers all actual

428 Thi Hong Nhan Vu et al. ETRI Journal, Volume 30, Number 3, June 2008

Fig. 10. AllMOP vs. GSP with running time as function of
min_sup.

0
50

100
150
200
250
300

21% 9% 7% 3%
min_sup

E
xe

c.
tim

e
(s

)

AllMOP
GSP

0
20
40
60
80

100
120
140
160

21% 9% 7% 3%
min_sup

E
xe

c.
tim

e
(s

)

AllMOP
GSP

(a) Cell size r=62.5 and re-sampling rate ρ=2

(b) Cell size r=125 and re-sampling rate ρ=4

Fig. 11. MaxMOP vs. DFS_MINE with running time as function
of min_sup.

0

50

100

150

21% 9% 7%

min_sup

E
xe

c.
tim

e
(s

)

MaxMOP DFS_MINE

frequent cells but overestimates them. This causes memory
overflow with min_sup = 7% due to the storage of all
subpatterns of a frequent pattern (Fig. 10(b)). With this cell size,
for an actual pattern, GSP produces more than one maximal
pattern including all subpatterns, whereas our clustering
method compresses them into just one pattern, thus, saving lots
of memory. Moreover, thanks to the efficient pruning method,
the processing cost is significantly reduced. In contrast, the
redundant candidates of GSP lead to high cost. For low
minimum support values, the cost of GSP is less than that of
AllMOP because clustering incurs a high cost, but the reverse
is true for higher values because many more patterns are
generated by GSP than AllMOP.

E. MaxMOP vs. DFS_MINE

This experiment was carried on the dataset D3000_T40_L10,
and the cell size r was 125. Figure 11 shows that MaxMOP
incurs a slightly higher cost than DFS_MINE due to clustering

Fig. 12. Precision as function of min_sup.

0

0.2

0.4

0.6

0.8

1.0

3% 7% 9% 21%
min_sup

P
re

ci
si

on

D560_l3 D500_l4 D430_l5 D200_l8

z

Fig. 13. Recall as function of min_sup.

0

0.2

0.4

0.6

0.8

1.0

3% 7% 9% 21%
min_sup

R
ec

al
l

D560_l3 D500_l4 D430_l5 D200_l8

and adjustment of pattern region size. Nevertheless, MaxMOP
inherits an advantage of DFS_MINE, namely, the pruning
method. Moreover, its temporal operation in candidate pattern
generation plus the consideration of the direction of movement
helps to eliminate many redundant candidates generated when
DFS_MINE is used. However, without the clustering operation,
the large number of actual patterns generated by DFS_MINE
leads incurs a higher cost. Our test also demonstrated that
MaxMOP efficiently compresses the patterns according to
thematic regions as a result of the clustering operation.

2. Evaluation of the RLP Algorithm

The datasets used here were generated in the same way as
the trajectories introduced in the previous section, but with a
small modification. We distinguished the trajectories of the user
by changing the weekday, but we kept the day timestamp of
the trajectories in all datasets that we previously used. Two
types of datasets were distinguished: the training set and the
test set.

The following experiments were conducted to optimize the
parameters of our methods, which are min_sup and min_conf.
The chosen training set in this case is D3000_T40_L10. The
test set is denoted as D200_l8, which means this set has 200
movements with the length of 8. We set the cell size r to 125
and the temporal extent τ to 4 in the next two experiments as

ETRI Journal, Volume 30, Number 3, June 2008 Thi Hong Nhan Vu et al. 429

Fig. 14. Precision as a function of min_conf.

0
0.2
0.4
0.6
0.8
1.0
1.2

10% 40% 90% 100%

min_conf

P
re

ci
si

on

D560_l3 D500_l4 D450_l5 D200_l8

default values if there is no indication of specific values.

A. Effect of Minimum Support Values

We fixed the minimum confidence value at 70%. Figures 12
and 13 show that increasing the support threshold results in
decreased precision and decreased recall. When the min_sup
value increases, the number of frequent patterns decreases; thus,
the number of movement rules in decreases, and this negatively
affects the relevant and correct prediction. Additionally, a
decrease in the number of movement rules leads to an increase
in the number of false negative locations, and this brings about
a decrease in recall. It would be the most appropriate to adopt a
min_sup of 3% since both precision and recall are highest for
this value.

Since precision and recall have inverse variation, we
considered only precision in the next tests.

B. Effect of Minimum Confidence Values

We used the same test sets that were used to evaluate the
effect of min_sup on the recall and precision of the RLP
algorithm to investigate how the minimum confidence values
min_conf affect them by fixing min_sup at 9%. As Fig. 14
shows, precision increases and recall decreases as the
minimum confidence value increases because only the rules
with high confidence values are used for prediction.

C. Effect of Changing Granularities

In this test, the movement rules used in the experiments were
obtained from the dataset D3000_T40_L10 and the future
location prediction was carried out on the test set D500_l4. As
previously described, the map has 32 regions, and the space is
partitioned into regular cells. Cell sizes were adjusted
according to the temporal extent τ by the following setting.
Given the sampling rate Δt = 8, if the temporal extents selected
are Δt/2 = 4 and Δt/4 = 2, then the cell sizes are changed from
r = 125 to r/2 = 62.5, that is, the space becomes the 8×8 grid
and the 16×16 grid, respectively. Therefore, each region consist

Fig. 15. RLP vs. UMP with precision as functions of min_sup for
cell size r/2.

0.5
0.6
0.7
0.8
0.9
1.0

3% 7% 9% 21%
min_sup

P
re

ci
si

on

RLP_r/2 UMP_r/2

Fig. 16. RLP vs. UMP with precision as a functions of min_conf
for cell size r/2.

0
0.2
0.4
0.6
0.8
1.0

10% 40% 90% 100%
min_conf

P
re

ci
si

on

RLP_r/2 UMP_r/2

Fig. 17. RLP vs. UMP with precision as a function of min_sup for
cell size r.

0
0.2
0.4
0.6
0.8
1.0

3% 7% 9% 21%
min_sup

P
re

ci
si

on

RLP_r UMP_r

Fig. 18. RLP vs. UMP with precision as a function of min_conf
for cell size r.

0.5
0.6
0.7
0.8
0.9
1.0

10% 40% 90% 100%
min_conf

P
re

ci
si

on

RLP_r UMP_r

of 2 cells in the case of 8×8 grid and 4 cells in the case of
16×16 grid. UMP was tested on the grid defined in this
research and in the same experimental setting for our method.

As seen in Figs. 15 and 16, the curves that represent the
precision and the recall of UMP are much lower than those of

430 Thi Hong Nhan Vu et al. ETRI Journal, Volume 30, Number 3, June 2008

RLP. Because UMP is a grid-based method, with small cell
sizes it misses a lot of frequent cells. When frequent cells are
missed, longer frequent patterns are lost, and this in turn results
in the loss of movement rules. The decrease in the number of
rules reduces precision. Moreover, the loss of rules extends
unpredictability to many locations, so recall is also reduced.
Thus, these effects on precision and prediction are a function of
the min_conf as shown in Fig. 16.

Figures 17 and 18 show a comparison of the precision and
recall of RLP and UMP for the larger cell size r. The prediction
ability of UMP improves, but is still lower than that of RLP,
when the number of movement rules increases. Despite higher
quality, UMP has a disadvantage, that is, the memory
overflows when min_sup is rather small, less than 7% in our
case (see Fig. 17).

VI. Conclusion

This paper proposed a new technique including two
algorithms, AllMOP and MaxMOP, for mining frequent
movement patterns from a massive amount of raw data
referred in space and time. Movement patterns discovered
from trajectories in traffic may allow inducement of traffic flow
information to help users travel efficiently. Additionally, to
support service providers in sending information to users in a
push-driven manner, the RLP technique for estimating users’
future locations was proposed based on the users’ past
movements. Our proposed algorithms were implemented, and
their performance was studied with various parameters and
datasets and was compared with the previous methods. We
compared the frequent movement pattern mining technique
with a grid-based technique using the GSP and DFS_MINE
algorithms with respect to the capability of knowledge
discovery, execution time, and memory requirement. The
results indicated that our methods are quite good in terms of
running time and the compression of discovered knowledge
due to the operation of trajectory reconstruction and the use of
clustering. The efficiency of the RLP location prediction
technique was evaluated with respect to precision and recall.
Compared with the previous grid-based UMP algorithm, our
technique is better. The results showed that the performance of
all algorithms is affected by the re-sampling rate and the
distance threshold used in clustering; therefore, we also
suggested suitable values.

References

[1] S. Jensen, A. Kligys, T.B. Pedersen, and I. Timko,
“Multidimensional Data Modeling for Location-Based Services,”

Proc. VLDB, vol. 13, no. 1, 2004, pp.1-21.
[2] K.W. Min, K.W. Nam, and J.W. Kim, “Multilevel Location

Trigger in Distributed Mobile Environments for Location-Based
Services,” ETRI J., vol. 29, no. 1, 2007, pp. 107-109.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. VLDB, 1994, pp. 487-499.

[4] R. Srikant and R. Agrawal, “Mining Sequential Patterns:
Generalizations and Performance Improvements,” Proc. EDBT,
1996, pp. 3-17.

[5] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao,
and D.W. Cheung, “Mining, Indexing, and Querying Historical
Spatiotemporal Data,” Proc. SIGKDD, 2004, pp. 236-245.

[6] I. Tsoukatos and D. Gunopulos, “Efficient Mining of
Spatiotemporal Patterns,” Proc. SSTD, LNCS, vol. 2121, 2001,
pp. 425-442.

[9] D. Katsaros, A. Nanopoulos, M. Karakaya, G. Yavas, O. Ulusoy,
and Y. Manolopoulos, “Clustering Mobile Trajectories for
Resource Allocation in Mobile Environments,” Proc. Intelligent
Data Analysis Conference, vol. 2810, 2003, pp. 319-329.

[10] G. Yava, D. Katsaros. O.Ulusoy, and Y. Manolopoulus, “A Data
Mining Approach for Location Prediction in Mobile
Environments,” Data and Knowledge Engineering, vol. 54, no. 2,
Aug. 2005, pp. 121-146.

[11] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. ACM Knowledge Discovery and Data Mining,
1996, pp. 226-231.

[12] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Communication of ACM, vol. 26, 1983, pp. 832-843.

[13] D. Pfoser and C.S. Jensen, “Capturing the Uncertainty of Moving-
Object Representations,” Proc. Advances in Spatial Databases,
6th International. Symposium SSD, 1999, pp. 111-132.

[14] N. Meratnia and R.D. By, “Aggregation and Comparison of
Trajectories,” Proc. GIS, ACM, 2002, pp. 49-54.

Thi Hong Nhan Vu received the MS and PhD
degrees from the School of Electrical and
Computer Engineering, Chungbuk National
University, Rep. of Korea, in 2004 and 2007,
respectively. She is currently with the
Electronics and Telecommunications Research
Institute, Rep. of Korea. Her major research

interests include spatiotemporal data management systems, location-
based services, data mining, machine learning, context aware
applications in ubiquitous computing environments, and the
development of ubiquitous sensor network platforms.

ETRI Journal, Volume 30, Number 3, June 2008 Thi Hong Nhan Vu et al. 431

Jun Wook Lee received the MS and PhD
degrees from the School of Electrical and
Computer Engineering, Chungbuk National
University, Rep. of Korea, in 1997 and 2003,
respectively. He is currently with the Electronics
and Telecommunications Research Institute,
Rep. of Korea. His major research interests

include sensor data mining, spatiotemporal data mining, location-based
services, context awareness in ubiquitous computing environments,
and the development of USN middleware platforms.

Keun Ho Ryu received the PhD degree from
Yonsei University, Rep. of Korea, in 1988. He
is a professor at Chungbuk National University,
Rep. of Korea. He worked at the University of
Arizona as a post doctoral research scientist and
at the Electronics and Telecommunications
Research Institute. He has served on numerous

program committees including the IEEE International Conference on
Advanced Information Networking and Applications (AINA), the
IEEE International Symposium on Mining the Asian Web (MAW),
the International Conference on Web Engineering (ICWE), the
International Conference on Web-Age Information Management
(WAIM), the Asia Pacific Web Conference (APWeb), and the
International Conference on Web Information Systems (WISE). He
was a demonstration co-chair of the Very Large Data Base Conference
(VLDB). His research interests include temporal databases,
spatiotemporal databases, temporal GIS, ubiquitous computing and
stream data processing, knowledge base information retrieval, database
security, data mining, and bioinformatics. He has been a member of the
IEEE and a member of the ACM since 1983.

