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In this paper, we offer a new technique to discover 
frequent spatiotemporal patterns from a moving object 
database. Though the search space for spatiotemporal 
knowledge is extremely challenging, imposing spatial and 
timing constraints on moving sequences makes the 
computation feasible. The proposed technique includes 
two algorithms, AllMOP and MaxMOP, to find all 
frequent patterns and maximal patterns, respectively. In 
addition, to support the service provider in sending 
information to a user in a push-driven manner, we 
propose a rule-based location prediction technique to 
predict the future location of the user. The idea is to 
employ the algorithm AllMOP to discover the frequent 
movement patterns in the user’s historical movements, 
from which frequent movement rules are generated. 
These rules are then used to estimate the future location of 
the user. The performance is assessed with respect to 
precision and recall. The proposed techniques could be 
quite efficiently applied in a location-based service (LBS) 
system in which diverse types of data are integrated to 
support a variety of LBSs. 
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I. Introduction 

Convergence of location-aware devices, wireless 
communication, and geographic information system 
functionalities enables the deployment of new services such as 
location-based services (LBSs). Moving users of e-services 
involving location information disclose their positional 
information to the services, which in turn use this with other 
information to provide functionalities. Services accumulate 
data derived from the users’ requests and integrate this with 
other user information in a multidimensional database [1], [2]. 
Our work concentrates on the development of data mining 
techniques for knowledge discovery and delivery in LBSs.  

The data mining field dates back almost 20 years [3], [4]. 
However, the field of spatiotemporal data mining, which is 
extremely challenging due to the exponential explosion of the 
search space for knowledge, is still in its infancy [4], [5]. The 
algorithms proposed in [5] discover spatiotemporal periodic 
patterns from trajectories of equal length, which are then 
exploited in an index structure to support the execution of 
spatiotemporal queries. We are concerned with trajectories of 
random length and the problem of imprecise sampled points. In 
addition, DFS_MINE was introduced in [6] to discover 
spatiotemporal patterns for weather prediction. This paper 
studied the relationships between time-varying attributes for 
fixed locations, but it did not consider how the algorithm could 
be applied to moving object mining. In this case, it is necessary 
to seek the relationships between stable attributes of objects 
with varying-time locations. There have also been many 
studies on location prediction [7], [8]. The study which is the 
most relevant to ours is [8], in which the UMP algorithm was 
proposed. However, the new support value determining 
method of [8] prevents the pruning of unnecessary candidates. 
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Timestamps are not associated with rules, so when the user will 
enter a future location cannot be known. Moreover, the fixed 
cell in the network cannot be adapted to the thematic partition 
space considered here.  

In this paper, towards the goal of reducing the error in the 
observations of a trajectory, the trajectory is reconstructed by 
re-sampling its positions. The proposed technique includes two 
algorithms, AllMOP and MaxMOP, to find all frequent 
movement patterns and maximal patterns, respectively. 
Though this task is extremely time-consuming, exploiting the 
spatiotemporal proximity feature of the problem domain 
makes the computation feasible. Because objects move in a 
thematically decomposed space, we take into account the 
concept of the graph and the transitive property of the similarity 
measurement of paths in a graph during the process of 
candidate generation, this helps to reduce the number of pattern 
candidates. Moreover, to control the density of the pattern 
regions and automatically adjust the shape and size of the 
regions, we employ a grid-based clustering technique. 
Efficiency is judged in comparison with the grid-based 
technique using the GSP algorithm [7] and DFS_MINE [6] 
with respect to the discovered knowledge, execution time, and 
memory requirement. The final goal is to support the 
information dissemination of the LBS system in a push-driven 
fashion. We propose a rule-based location prediction (RLP) 
algorithm to predict the future location of a moving user based 
on movement rules. Movement rules are generated from the 
movement patterns that are discovered from the user’s 
historical movements using the algorithm AllMOP. The 
performance of this method is assessed with respect to 
precision and recall and compared to the previous method, 
UMP. The prediction of our technique is more precise than that 
of UMP. Using the proposed algorithm to predict future 
location and the algorithms to discover frequent movement 
patterns, the LBS system is able to efficiently provide users 
with traffic LBS and to send information to customers in a 
push-driven manner.   

II. Problem Definition 

Definition 1: Trajectory. The trajectory of a moving object 
with identifier oj is defined as a finite sequence of points {(oj, p1, 
vt1), (oj, p2, vt2),…, (oj, pn, vtn)} in the X × Y × T space, where 
point pi is represented by coordinates (xi, yi) at the sampled time 
vti for 1≤i ≤n. 

Assume that there are N distinct moving objects, DB is defined  
as the union of a time series of positions

1

N
jj

DB D
=

=∪ , where 

Dj is a time series containing quadruples (oj, xj
i, yj

i, vti) for     
1 ≤ j ≤ N and 1 ≤ i. 

The spatial organization of the reference plane M ⊆ R is 
represented as a set of regions. The region is related to a 
specific thematic interpretation of space, so, M is represented as 
a finite set of regions {a1,…,an} such that 1 1

n
i a M=∪ = with  

ai∩aj=φ and i≠j. The moving possibility of an object from 
region to region is represented by a directed graph. After 
partitioning M, we get a hierarchical structure as introduced in 
[3]. However, in this study, we assume that a region of the 
lower level is fully contained in a region of the higher level. 

Let T be the maximal timestamp among timestamps of the 
trajectories in the moving object database D. Let oj

i denote the 
position of the moving object oj, for 1 ≤ j ≤ N at timestamp vti 
for 1 ≤ i ≤ T. The trajectory of an object can be defined by the 
sequence of points oj

1 oj
2…oj

K for 1 ≤ K ≤ T. 
Definition 2: Moving sequence. Given a minimal temporal 

interval τ and the trajectory’s lifespan max_span [start, end], a 
moving sequence is a list of temporally ordered region labels 
ms = <(a1,t1), (a2,t2),…,(aq,tq)> , where ai contains oj

i, ti – ti-1 ≥ τ, 
and tq - t1 ≤ max_span.end – max_span.start, for q ≤ T and 1≤ i ≤ q.  

A sequence composed of k regions is denoted as a k-pattern. 
For example <(R1,t1),(R2,t2),(R2,t3)> is a 3-pattern. 

Definition 3: Subsequence. For a moving sequence S1, if 
region a1 occurs before a2, it is denoted as a1 < a2. S1 is a 
subsequence of S2 if there is a one-to-one temporally order 
preserving function f that maps regions of S1 to those of S2 such 
that for every ai ∈S1: ai ∩ f(ai) ≠∅, if ai < aj then f(ai) < f(aj), 
and tai+1-tai = tf(ai+1)-tf(ai).  

For instance, in Fig. 3, sequence <(R123, t1), (R23, t3)> is a 
subsequence of <(R13, t1), (R01, t2), (R23, t3)> since, 
sequentially, R123∩R13≠φ at time t1 and at time t3 region R23 is 
the same. 

Definition 4: Frequent pattern. A trajectory is said to 
comply with moving sequence ms if, for each region ai ∈ ms at 
vti, the point oj

i of the trajectory is in ai at the same time. The 
support of sequence ms can be defined as the number of 
trajectories in DB complying with it. If ms has support(ms) ≥ 
min_sup, where min_sup is a user-specified minimum support 
threshold, then ms is defined as a frequent pattern. A frequent 
pattern is maximal if it is not a subsequence of any other 
sequences. 

To control the density of the pattern region ai, a density-
based partitioning method is exploited. Each region ai of 
pattern ms is dense if the set of positions Ai = {oj

i | oj
i ∈ ai} 

forms a dense cluster. According to [9], a dense cluster is 
defined by two parameters r and MinPts points. We apply a 
modified version of the partitioning method in the 
consideration of a multi-level spatiotemporal grid. Progressing 
from finer to coarser, locally dense cells can be found, which 
later can be combined with dense nearby grid cells to form 
clusters. The size of cells at the lowest level is decided based on 
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the imprecision degree of the moving points, which will be 
presented later. In our case, MinPts is equal to the value 
min_sup*N. Therefore, if all regions in ms are dense, then ms is 
frequent.  

Problem definition 1. Given the maximum speed vmax of a 
moving user, a moving object database DB, a reference plane 
M⊆R2, directed graph graph, a time interval max_span[start, 
end] imposed on the lifespans of trajectories, and a minimum 
support min_sup, the problem is to discover frequent 
movement patterns in DB. 

The second part of this study is concerned with movement 
rules discovered from the historical movements of the 
customer, which are used to predict the future location of a 
moving customer. The rule is defined as follows. A movement 
rule has the form rul = A  B in which A and B are two 
frequent movement patterns. The part of the rule before the 
arrow is the antecedent, and the part after the arrow is the 
consequent of the rule. As we describe later, the movement rule 
rul is generated from the frequent movement pattern A∪B, 
which was just defined. The confidence of the rule rul is 
determined using the following formula:  

    ( )( )
( )

support A Bconfidence rul
support A

∪
=        (1) 

in which the support of the pattern A ∪B is the support of the 
rule. It is available after the frequent movement pattern 
discovering process, but the support of pattern A is not, and we 
have to determine it. It is notable through the process of 
discovering frequent patterns the sizes of pattern regions are 
reserved or get smaller when the length of the pattern increases. 
Therefore, the support of the antecedent A with length k is 
determined by accessing the set. All frequent k-patterns, Fk, are 
kept to find a pattern Pk whose regions coincide in temporal 
order or contain the regions of A. We then have its support, 
which is either the support of Pk or the number of objects in the 
overlapped region of some pair of regions at a specific time 
point belonging to Pk and A. Note that if just one region at time 
t in pattern A coincides with another region at time t in Pk, then 
the support of A is the same as that of Pk.  

If the confidence value is at least a predefined threshold 
min_conf, then the rule is said to be frequent and confident. 

Problem definition 2. Given the maximum speed vmax of a 
moving user, the historical trajectory of the user is a time 
series of positions denoted by DB = {(pi, vti),1 ≤ i ≤ n} 
sampled at the time period ∆t, a reference map M⊆R2, the 
maximal timing constraint max_gap, minimum support 
min_sup, minimum confidence min_conf. The problem is to 
discover all frequent movement rules in DB satisfying both 
min_sup and min_conf. 

III. Algorithms for Discovering Movement Patterns   

We provide a function MINE_MOP to allow the adoption of 
the type of patterns we wish to obtain with the same input. 
Before processing, the moving object database DB is sorted 
according to object identifier oj, and then it is sorted by 
timestamp vt. Next, the trajectories whose lifespans, denoted by 
[vts, vte], are ‘during’ the given time interval max_span[start, 
end] are extracted from DB. The temporal operator during was 
introduced in [10]. 

1. Trajectory Reconstructions 

The sampling error across time was proved to be an error 
ellipse and a circle in the worst case [11], which is the case we 
take into account in this research. To make the operations more 
efficient, we operate on its minimum bounding rectangle, 
which is also the cell in the reference plane explained here. For 
a grid threshold r, and without considering time, reference 
plane M is decomposed into an nx×ny array of equal-sized cells. 
When time is considered, plane M is decomposed into uniform 
spatiotemporal units. A spatiotemporal unit is defined as the 
minimum spatial and temporal extent of interest. Each object 
stays in a cell for a certain time interval τ (or minimum interval 
min_gap here). Because the cell is used for storage, we have to 
decide the bounds of spatial and temporal extent.  

For example, given a sampling rate of 12, the result of re-
sampling the trajectories in Fig. 1 shows that cell d[2,3] in Fig. 
1(a) is frequent for cell size r and re-sampling rate ρ = 6. 
However, for smaller cell size r/2 and re-sampling rate ρ = 4, 
the points in that location are distributed into two smaller cells 
d[5,6] and d[5,7] shown in Fig. 1(b), and both are infrequent.  

Actually, the object’s maximum velocity vmax and the chosen 
re-sampling ρ affect this choice. Re-sampling rate and cell size 
must be selected so that the object’s movement produces at 
least one hit in each cell it visits. As a rule of thumb, parameter 
r must be chosen such that (vmax/ρ)≪(r/ 2 ). In addition, 
temporal extent τ is determined a priori and may change 

 

Fig. 1. Spatiotemporal extent vs. frequent cells. 
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depending on the application. As a rule of thumb, it should be 
chosen such that 1≪ρτ, as ρτ is a measure for hit number 
expectation per cell [12]. 

The object space having the origin (x0,y0) is represented as a 
regular grid and stored in an array D[1:nx,1:ny]. If [Sx, Sy] is the 
two-dimensional size of the search space, each cell has size 
[Sx/nx, Sy/ny]. For point P(x,y), the identifier of the cell Dij, to 
which P belongs, is determined by i=(x-x0)/(Sx/nx)+1 and  
j=(y-y0)/(Sy/ny)+1. Every trajectory is converted into a set of 
cell labels Dij, each of which is associated with a timestamp. 

2. Trajectory Generalization  

We assume multiple hits in a cell will count just once for a 
trajectory, so we have to generalize the trajectories. For a 
movement, we eliminate all consecutive points lying in the 
same cells and keep only the first point.  

Assume that after projecting the points of trajectories in DS 
into cells, we obtain the result presented in Fig. 2(a). We 
remove the second points in the cells D20 and D12. The final 
results are shown in Fig. 2(b). 
 

 

Fig. 2. Result of generalized trajectories in the database. 

oid vt x y location 
2006/1/30/ 7:00 10 0 D10 
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o1 
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2006/1/30/ 7:30 16 22 D12

o2

2006/1/30/ 8:30 18 35 D13

(a) Moving points stored in 
pages Dij 

(b) Generalized trajectories 

 

3. Dataset Transformation   

Physically, the data structure of each cell in the moving 
sequence is constructed in the form of (Dij, oj, vti), in which Dij 
contains a pointer, which indicates the page D[i,j], where the 
position of object oj at time vti is stored. Ultimately, the moving 
object dataset DS is converted into a set MS of moving 
sequences, each with distinct identifiers oj. 

4. Algorithm AllMOP     

Discovering all frequent patterns is accomplished by the 
algorithm AllMOP, shown in Fig. 6. It takes the set of moving 
sequences MS from the previous step as input. The algorithm 
makes multiple passes to find all frequent patterns.  

A. Finding Frequent 1-Patterns  

It is impossible to apply techniques such as GSP or 
DFS_MINE directly because the shape and size of a region in 
one pattern is discovered and adjusted automatically at each 
pass. Therefore, we have to use the following procedure. First, 
a dataset of moving objects is decomposed into groups of 
moving points, each Ai = {oj

i | oj
i ∈ ai,} for one timestamp vti  

(1 ≤ i ≤ T). Frequent 1-patterns are dense regions (or clusters) 
that are discovered from the sets Ai. To find them, for each 
timestamp vti, we scan the set MS to count cells and get 
frequent ones. Next, consecutive dense cells belonging to the 
same region ai are merged into larger regions, which might be 
merged continuously to form clusters. They are then 
maintained in a set F1, called frequent 1-patterns. The points 
lying in the sparse cells are assigned to the found clusters by 
applying range queries with diameter (r/ 2 ). The points that 
do not belong to any cluster are called outliers. They are 
excluded from the cells as soon as they are found. The empty 
cells are discarded simultaneously. 

Figure 3(a) shows a set of moving object trajectories in a 
two-dimensional space after the step of trajectory 
generalization. We assume that the maximal timestamp T is 5, 
and the support threshold, min_sup, is 2. 

In this case, the spatial organization consists of five regions 
denoted by Rj (0 ≤ j ≤ 5). The numbers that are marked in each 
region Rj index the cells belonging to that region. That is, the 
cell indexed by number 1 in region R1 is denoted as R11). 

Moving points are projected into cells, which have pointers 
that indicate pages, one for each cell. In the figure, the pointers 
are represented by the dashed lines. As seen in Fig. 3(b), the 
starting point of object 1 at time t1 logically lies in the cell R13 
and is stored in the element D[2,2]. Its next position at time t2 is 
in the cell R01 and is stored in D[3,2]. Next, dense regions are 
found. Figure 4(a) shows the groups of moving points obtained 
after decomposing the trajectories of Fig. 3(a). Consider the 

 

 

Fig. 3. Moving trajectories used in the example. 
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Fig. 4. Example of finding frequent 1-patterns. 

1-pattern

outlier  

outlier  
R123 R01 

R32 
R33 

R31 

R42 

R23 

t1 

Pages  D[1,2] D[2,2] D[2,2] D[3,1] D[4,1] D[5,1] 

X 

t2 t3 t4 t4 t4 
… 

sup
<(R123,t1)> 4
<(R01,t2)> 6
<(R23,t3)> 4

<(R31,t3)> 2

<(R42,t3)> 2
<(R3,t4)> 8

<(R03,t5)> 2

(a) Finding dense regions (b) 1-patterns F1

Y 

t2 
t3 
t4 
t5 

 
 
example of finding dense regions at time t4.  The count of cell 
R41 is just one less than min_sup, so it is discarded, and the 
only point in it is an outlier. We determine three dense cells, 
R31, R32, and R33, which refer to three different pages, namely, 
D[3,1], D[4,1], and D[5,1], as indicated by the pointers shown 
in Fig. 2(a). Since all of them are neighboring cells and are 
contained in the same region, R3, they are merged to form one 
cluster, R3. However, R3 still points to those three pages 
corresponding to the cells comprising it. Frequent 1-patterns F1 
are shown in Fig. 4(b). 

B. Finding Frequent k-Patterns (k ≥ 2) 

A candidate 2-pattern is created by merging a pair of 
frequent 1-patterns in the consideration of the time constraint. 
Let (ai,vti) and (aj,vtj) be two 1-patterns in F1. A candidate 2-
pattern, for example <(ai,vti), (aj,vtj)>, is created if vti>vtj and 
the regions ai and aj are neighbors because an object can only 
move into its neighboring regions. 

For k > 2, candidate patterns are generated as follows. Given 
a set of frequent (k-1)-patterns, Fk-1, the candidates for the next 
pass are created by making a candidate for the next pass is 
created by merging a pair of (k-1)-patterns in Fk-1. Pattern 
s1=<(a1,vt1), (a2,vt2),…, (ak-1,vtk-1)> joins with pattern s2 = 
<(b2,vt’2), (b3,vt’3),…, (bk,vt’k)>. The candidate cand is 
produced by the merging of s1 and s2 if the following 
conditions are satisfied: after the first region of s1 and the last 
region of s2 are dropped, vti = vt’i and ai ∩bi ≠ φ (for 2 ≤ i ≤ k-1). 

To facilitate fast and effective candidate generation, MBRs 
of the pattern regions are exploited. If all intersections of those 
pairs are non-empty, the created candidate pattern will be in the 
form of cand = <(a1,vt1), (c2,vt2),…, (ck-1,vtk-1), (bk,vt’k)>, in 
which c2 = MBR(a2) ∩ MBR(b2),…, ck-1 = MBR(ak-1) ∩ 
MBR(bk-1). Then, we join the points in all regions of cand with 
criteria Ri.oj = Rj.oj (or cand = Ri Ri.o

j
 = Rj.o

j
 & Ri.vti = Rj.vtj  Rj).  

The support value of a candidate pattern is the number of 
objects oj that comply with the candidate patterns.  

Next, the regions of the candidate need to be validated 
because they may no longer be dense after the join operation. If  

 

Fig. 5. Validating candidate patterns. 
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the support value is at least min_sup, then the regions of a 
candidate will be re-clustered. For a new cluster, a pattern will be 
created and the sizes of the pattern’s regions are adjusted as well. 
For instance, consider the candidate pattern <(R123,t1), (R01,t2)> 
shown in Fig. 5(a). After joining the points of R123 with those 
of R01, the size of cluster R01 is still maintained, but the size of 
cluster R123 is reduced to R13. Second, consider the candidate 
pattern <( R23,t3), (R3,t4)> depicted in Fig. 5(b). After joining 
the points of R23 with those of R3, the region R23 is still the 
same, but the remaining points of R3 are grouped into two 
clusters R31 and R33. Therefore, two new patterns are created, 
namely, <(R23,t3), (R31,t4)> and <(R23,t3), (R32,t4)>. 

Finally we consider the candidate pruning method. A 
candidate k-pattern will be discarded if it has an infrequent 
subpattern. To tackle this problem, we keep a list of all minimal 
infrequent patterns in the memory MinInfreqList as introduced 
in [6]. Initially, MinInfreqList contains all infrequent 2-patterns. 
When a new candidate pattern cand is generated, we check 
whether it is a superpattern of any pattern in this list. If it is, it  
 

 

Fig. 6. Algorithm for finding all frequent patterns. 

Algorithm AllMOP() 
For every 1-pattern (Ri, ti)∈ F1 //generating 2-patterns 

For (Rj, tj) ∈ F1 && i ≠ j //assume vti > vtj 
if (∃ an edge in graph connecting Ri to Rj)) then   

C2  C2 ∪ <(Ri, ti), (Rj, tj)> 
For all candidate 2-patterns <(Ri, ti),(Rj, tj)> ∈ C2 

cand = Ri Ri.o
j
= Rj.o

j
  Rj; 

set_new_regions  Clustering points in cand;  
If |set_new_regions| ≠φ then for each new region Ri’ 

F2  F2 ∪ <(Ri’, ti), (Rj’, tj)> 
else Insert(MinInfreqList, cand); 

For (k = 3; Fk-1 ≠ φ; k++) 
For each pair Pi & Pj ∈ Fk-1 

cand joining the pair (Pi, Pj) after checking MBR-
intersection 

if (cand ≠ φ ) then Ck  Ck ∪ cand; 
Prune candidates by looking for a subpattern in 

MinInfreqList;  
If such a pattern exists, then update MinInfreqList; 

// determining support the remaining candidates  
For each cand ∈Ck  

cand = Pi Pi.o
j
= Pj.o

j
 & Pi.vti= Pj.vtj  Pj; 

if (|objects oj complying with cand| ≥ min_sup) 
set_new_regions  reclustering points in the regions of cand;

If |set_new_regions| ≠φ, then for each new region Ri’ 
Fk  Fk ∪ new_pattern; 

else Insert (MinInfreqList, cand); 
FMOP  set of all frequent sequences in Fk; 
return FMOP; 
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will be discarded at once, without making a temporal join on 
the sets of points of the candidate pattern regions. 

5. Algorithm MaxMOP 

The algorithm MaxMOP mines maximal patterns, which 
could save a lot of space and maintain all of the necessary 
information. In terms of the data structure, in addition to 
MinInfreqList, which is used for candidate pruning as 
previously mentioned, we need two other lists: MaxFreqList to 
store the maximal frequent patterns in the memory, and 
CandList to contain the patterns to prepare for the generation of 
new patterns. Both MaxFreqList and CandList are initialized 
with frequent 2-patterns; however, MinInfreqList is initialized 
with infrequent 2-patterns. MaxFreqList is updated with a new 
candidate pattern, cand, if all of the following three conditions 
hold: cand is not in the MaxFreqList, cand is found to be 
frequent, and cand is not a subpattern of any pattern in this list. 
If the three conditions hold, cand is inserted into MaxFreqList. 
After insertion, we remove all subpatterns of cand from the list. 
The result of this algorithm is kept in MaxFreqList. 

IV. Predicting Future Location of Moving User   

The purpose of the algorithm is to predict the location of a 
moving customer based on movement rules. In addition to re-
sampling the sampled points, it is necessary to transform the 
time series of locations into moving sequences. A moving 
sequence is created if the time difference between two 
consecutive points is greater than max_gap. Next, the AllMOP 
algorithm takes the set MS of moving sequences as input, and a 
directed graph, min_sup, is called to discover all frequent 
movement patterns.  

Assume a movement pattern P = <(l1, vt1), (l2, vt2),…,(lk, vtk)>, 
where k>1. All possible rules or the candidate rules that can be 
derived from such a pattern are the following: <(l1, vt1)>   
<(l2, vt2),…,(lk, vtk)>; <(l1, vt1), (l2, vt2)>  <(l3, vt3),…,(lk, vtk)>; 
…;<(l1, vt1), (l2, vt2),…,(lk-1, vtk-1)>  <(lk, vtk)>. The confidence 
 

 

Fig. 7. Algorithm for estimating future location. 

Algorithm RLP() 
PredLoc φ; t 1; 
For each rule r = <(a1, vt1),…(ai-1, vti-1)>  < (ai, vti),…(ak, vtk) > ∈ Rules 

If (when mapping P to r the time order is preserved and  the 
regions of {l1, l2,…,lj-1} successively have nonempty 
overlapping with the regions of {a1, a2…,ai-1} & (lj-1 overlaps ai-1)

MatchingRule  MatchingRule ∪ r;  
NextLocArray [t++] (<ai, vti>, r.support + 

r.confidence);  
NextLocArray  sort(NextLocArray); 
PredLoc  NextLocArray[1]; 

return PredLoc; 

 

values of the movement rules are computed using (1). Any rule 
whose confidence is higher than a predefined confidence 
threshold min_conf is selected. In this way, we discover all 
frequent movement rules from a set of movement patterns. 

With the movement rules discovered, the future location of a 
moving object can be estimated. Assume a user has followed 
the path P = <(l1, vt1), (l2, vt2),…,(lj-1, vtj-1)> up to now. The 
pseudo-code of the algorithm RLP is shown in Fig. 7. The 
algorithm searches for the matching rules. Their antecedents 
preserve the time order when mapping them to P and have 
non-empty overlapping with the regions of P in that order. The 
last location in the antecedent overlaps lj-1 as well. The first 
location of the consequent of such a rule and the value that is 
the sum of the confidence and the support values of the rule are 
stored in an array. This array is then sorted in descending order 
according to the sum of support and confidence values. The 
location and the timestamp in the first tuple is the next location 
the user will enter at that time. 

V. Implementation and Performance Analysis  

In this section, we present experiments that we carried out to 
evaluate the performance of the proposed techniques.  

1. Evaluation of AllMOP and MaxMOP  

We validated the efficiency of the proposed algorithms under 
diverse settings of parameters and datasets and compared them 
with grid-based technique using the GSP and DFS_MINE 
algorithms.  

A. Synthetic Dataset Generation  

To evaluate the efficiency of the proposed algorithms we 
built a dataset generator as follows. 

Prior to producing trajectories, the regions on the map M for 
the maximal movement patterns were decided. Then, we 
determined the directed graph for this map, a bidirected graph 
in this case. Assume that P is a generated pattern. A set of 
trajectories with lifespan in timestamp (vtt, 1 ≤ t ≤ T ) is created 
on the space. For each region of P, we assigned a set of points 
at a specific timestamp vtt on those trajectories. It is important 
that the distance between two points on the trajectories are set 
such that it is proportional to the minimum temporal extent τ, 
sampling rate Δt in the pattern, as well as object’s velocity. 
Moreover, we guarantee that the positions of the different 
objects arriving at the same location and at the same time will 
not coincide. This means that they are far enough apart, that is, 
α = r / (min_sup * N). For an object’s movement, it is 
necessary to determine if it has a random trajectory or if it 
complies with some frequent pattern. If its movement has a 
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random trajectory, the moving directions of its points are 
changed and the distance between the two points is also 
distorted. Otherwise, a maximal pattern P is selected and the 
moving object’s trajectory is produced in the following way. 
Assume that the object’s current point is pi-1, and the object 
moves to the next point pi. If the time difference between the 
two pattern regions corresponding to pi and pi-1 is a maximum 
of ρ, then pi of the trajectory is generated in its corresponding 
region and within α range. If not, pi is generated randomly but 
such that the movement directs the next pattern region. A 
random trajectory is determined by a random direction with 
respect to the previous location and a random distance.  

A map with the size of [1000, 1000] was partitioned into 
regular regions 250 m long and 125 m wide, that is, the map 
consists of 32 regions, denoted by ai. We assumed that all of the 
objects in the map would travel at the maximum velocity vmax of 
11 m/s, and the sampling rate, Δt, was 8. Throughout the 
experiment, we chose the same values for the re-sampling rate, ρ, 
and the temporal extent, τ. In accordance with such a setting of 
space, if the space is a 16×16 grid and τ is 2, then each region ai 
is composed of 8 cells Dij with size r =62.5. The moving objects 
were generated such that each object would hit four cells of the 
region ai and when we aggregated them using the higher 
resolution r = 125 and τ = 4 (in this case, the region ai consisted 
of two cells with this size) there were two pairs of consecutive 
points falling into two cells with that larger size. On average, 
70% of the object movements of the generated dataset had the 
maximal length of T. On average, 30% of those trajectories 
follow the same path. The remaining trajectories of the dataset 
(30%) are called random trajectories. The generated dataset, 
D500_T40_L10, includes 500 trajectories. The maximal 
timestamp, T, is 40, and the maximal pattern length, L, is 10. 

B. Performance of AllMOP and MaxMOP 

In all tests presented here, we applied the cell size r = 125 
and the temporal extent τ = 4. The results show that for 
constant dataset size, the execution time of AllMOP gradually 
increases with the change of trajectory length (see Fig. 9). We 
obtained the similar results for various database sizes with the 
same maximal length L. This is because the number of frequent 
patterns increases as the min_sup value decreases, which leads 
to longer execution time. We can affirm that AllMOP is 
scalable because the number of objects increases from 500 to 
3,000 (a factor of six) with a fixed maximal length, while the 
required time increases by a factor of less than six. Our other 
tests also returned the same results. Figure 9 shows a 
comparison of our two algorithms, AllMOP and MaxMOP. We 
used a fixed maximal timestamp T = 96 and min_sup = 7% for 
the datasets. Even though MaxMOP is little more time-  

 

Fig. 8. Execution time vs. data size. 
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Fig. 9. AllMOP vs. MaxMOP with 3000 trajectories. 
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consuming than AllMOP, it maintains only maximal patterns 
while AllMOP causes memory overflow. The cost of MaxMOP 
for mining maximal patterns is higher than that of AllMOP 
because MaxMOP includes an additional operation for pattern 
updating. However, its additional cost is not prohibitive. 

C. Comparison with GSP and DFS_MINE 

The following experiments were performed on the dataset 
D3000_T40_L10 to assess the effectiveness of our techniques 
compared with the grid-based technique using GSP and 
DFS_MINE. 

D. AllMOP vs. GSP  

We used the dataset D3000_T40_L10 and considered both 
small cell size and large cell size. 

For a small cell size (r = 62.5), even though GSP is very fast, 
moving points are split into different cells, so frequent cells are 
missed, which leads to longer frequent patterns being missed. 
As seen in Fig. 10(a), for the min_sup less than 9%, long 
patterns are missed. The cost of AllMOP is higher than that of 
GSP. The time required to scan the dataset of GSP to count the 
supports of candidate patterns, which are reduced after each 
step, is shorter than the time required to join and adjust the size 
of pattern regions with AllMOP (Fig. 10(a)).  

For a larger cell size (r = 125), GSP discovers all actual  
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Fig. 10. AllMOP vs. GSP with running time as function of 
min_sup. 
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Fig. 11. MaxMOP vs. DFS_MINE with running time as function
of min_sup. 
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frequent cells but overestimates them. This causes memory 
overflow with min_sup = 7% due to the storage of all 
subpatterns of a frequent pattern (Fig. 10(b)). With this cell size, 
for an actual pattern, GSP produces more than one maximal 
pattern including all subpatterns, whereas our clustering 
method compresses them into just one pattern, thus, saving lots 
of memory. Moreover, thanks to the efficient pruning method, 
the processing cost is significantly reduced. In contrast, the 
redundant candidates of GSP lead to high cost. For low 
minimum support values, the cost of GSP is less than that of 
AllMOP because clustering incurs a high cost, but the reverse 
is true for higher values because many more patterns are 
generated by GSP than AllMOP. 

E. MaxMOP vs. DFS_MINE 

This experiment was carried on the dataset D3000_T40_L10, 
and the cell size r was 125. Figure 11 shows that MaxMOP 
incurs a slightly higher cost than DFS_MINE due to clustering  

 

Fig. 12. Precision as function of min_sup. 
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Fig. 13. Recall as function of min_sup. 
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and adjustment of pattern region size. Nevertheless, MaxMOP 
inherits an advantage of DFS_MINE, namely, the pruning 
method. Moreover, its temporal operation in candidate pattern 
generation plus the consideration of the direction of movement 
helps to eliminate many redundant candidates generated when 
DFS_MINE is used. However, without the clustering operation, 
the large number of actual patterns generated by DFS_MINE 
leads incurs a higher cost. Our test also demonstrated that 
MaxMOP efficiently compresses the patterns according to 
thematic regions as a result of the clustering operation.  

2. Evaluation of the RLP Algorithm  

The datasets used here were generated in the same way as 
the trajectories introduced in the previous section, but with a 
small modification. We distinguished the trajectories of the user 
by changing the weekday, but we kept the day timestamp of 
the trajectories in all datasets that we previously used. Two 
types of datasets were distinguished: the training set and the 
test set.  

The following experiments were conducted to optimize the 
parameters of our methods, which are min_sup and min_conf. 
The chosen training set in this case is D3000_T40_L10. The 
test set is denoted as D200_l8, which means this set has 200 
movements with the length of 8. We set the cell size r to 125 
and the temporal extent τ to 4 in the next two experiments as  
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Fig. 14. Precision as a function of min_conf. 
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default values if there is no indication of specific values.  

A. Effect of Minimum Support Values 

We fixed the minimum confidence value at 70%. Figures 12 
and 13 show that increasing the support threshold results in 
decreased precision and decreased recall. When the min_sup 
value increases, the number of frequent patterns decreases; thus, 
the number of movement rules in decreases, and this negatively 
affects the relevant and correct prediction. Additionally, a 
decrease in the number of movement rules leads to an increase 
in the number of false negative locations, and this brings about 
a decrease in recall. It would be the most appropriate to adopt a 
min_sup of 3% since both precision and recall are highest for 
this value. 

Since precision and recall have inverse variation, we 
considered only precision in the next tests.  

B. Effect of Minimum Confidence Values 

We used the same test sets that were used to evaluate the 
effect of min_sup on the recall and precision of the RLP 
algorithm to investigate how the minimum confidence values 
min_conf affect them by fixing min_sup at 9%. As Fig. 14 
shows, precision increases and recall decreases as the 
minimum confidence value increases because only the rules 
with high confidence values are used for prediction. 

C. Effect of Changing Granularities  

In this test, the movement rules used in the experiments were 
obtained from the dataset D3000_T40_L10 and the future 
location prediction was carried out on the test set D500_l4. As 
previously described, the map has 32 regions, and the space is 
partitioned into regular cells. Cell sizes were adjusted 
according to the temporal extent τ by the following setting. 
Given the sampling rate Δt = 8, if the temporal extents selected 
are Δt/2 = 4 and Δt/4 = 2, then the cell sizes are changed from  
r = 125 to r/2 = 62.5, that is, the space becomes the 8×8 grid 
and the 16×16 grid, respectively. Therefore, each region consist  

 

Fig. 15. RLP vs. UMP with precision as functions of min_sup for 
cell size r/2.
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Fig. 16. RLP vs. UMP with precision as a functions of min_conf
for cell size r/2.
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Fig. 17. RLP vs. UMP with precision as a function of min_sup for 
cell size r. 
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Fig. 18. RLP vs. UMP with precision as a function of min_conf
for cell size r.
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of 2 cells in the case of 8×8 grid and 4 cells in the case of 
16×16 grid. UMP was tested on the grid defined in this 
research and in the same experimental setting for our method.  

As seen in Figs. 15 and 16, the curves that represent the 
precision and the recall of UMP are much lower than those of 
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RLP. Because UMP is a grid-based method, with small cell 
sizes it misses a lot of frequent cells. When frequent cells are 
missed, longer frequent patterns are lost, and this in turn results 
in the loss of movement rules. The decrease in the number of 
rules reduces precision. Moreover, the loss of rules extends 
unpredictability to many locations, so recall is also reduced. 
Thus, these effects on precision and prediction are a function of 
the min_conf as shown in Fig. 16. 

Figures 17 and 18 show a comparison of the precision and 
recall of RLP and UMP for the larger cell size r. The prediction 
ability of UMP improves, but is still lower than that of RLP, 
when the number of movement rules increases. Despite higher 
quality, UMP has a disadvantage, that is, the memory 
overflows when min_sup is rather small, less than 7% in our 
case (see Fig. 17). 

VI. Conclusion  

This paper proposed a new technique including two 
algorithms, AllMOP and MaxMOP, for mining frequent 
movement patterns from a massive amount of raw data 
referred in space and time. Movement patterns discovered 
from trajectories in traffic may allow inducement of traffic flow 
information to help users travel efficiently. Additionally, to 
support service providers in sending information to users in a 
push-driven manner, the RLP technique for estimating users’ 
future locations was proposed based on the users’ past 
movements. Our proposed algorithms were implemented, and 
their performance was studied with various parameters and 
datasets and was compared with the previous methods. We 
compared the frequent movement pattern mining technique 
with a grid-based technique using the GSP and DFS_MINE 
algorithms with respect to the capability of knowledge 
discovery, execution time, and memory requirement. The 
results indicated that our methods are quite good in terms of 
running time and the compression of discovered knowledge 
due to the operation of trajectory reconstruction and the use of 
clustering. The efficiency of the RLP location prediction 
technique was evaluated with respect to precision and recall. 
Compared with the previous grid-based UMP algorithm, our 
technique is better. The results showed that the performance of 
all algorithms is affected by the re-sampling rate and the 
distance threshold used in clustering; therefore, we also 
suggested suitable values.  
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