• 제목/요약/키워드: frequency-to-voltage converter

검색결과 920건 처리시간 0.029초

Zero Voltage Switching을 이용한 저전압 DC/DC 컨버터의 고집적회로 설계 (VLSI Design of Low Voltage DC/DC Converter using Zero Voltage Switching Technique)

  • 전재훈;김종태;홍병유
    • 전력전자학회논문지
    • /
    • 제6권6호
    • /
    • pp.564-571
    • /
    • 2001
  • 본 논문은 휴대용 기기를 위한 고효율의 저전압용 DC/DC 컨버터의 고집적회로에 관한 연구이다. 컨버터의 모든 능동 소자들은 0.65$\mu\textrm{m}$표준 CMOS 공정을 사용하여 단일 칩으로 구현하였다 수종 소자들의 크기를 줄이기 위해서 1MHz의 주파수에서 동작하며 높은 주파수에서 의스위칭 손실을 최소화하기 위하여 ZVS 방식으로 설계하였다. 시뮬레이션 결과 출력 전압이 2V일때 1W의 출력을 가지며 full 부하에서 95%의 효율을 보였다.

  • PDF

Design of a Frequency Locked Loop Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제6권3호
    • /
    • pp.275-278
    • /
    • 2008
  • In this paper, I propose the full CMOS FLL(frequency locked loop) circuit. The proposed FLL circuit has a simple structure which contains a FVC(frequency-to-voltage converter), an operational amplifier and a VCO(voltage controlled oscillator). The operation of FLL circuit is based on frequency comparison by the two FVC circuit blocks. The locking time of FLL is short compared to PLL(phase locked loop) circuit because the output signal of FLL is synchronized only in frequency. The circuit is designed by 0.35${\mu}m$ process and simulation carried out with HSPICE. Simulation results are shown to illustrate the performance of the proposed FLL circuit.

스위칭 주파수가 일정한 공진형 DC-DC코버어터 (Resinant DC-DC Converter with Constant Switching frequency)

  • 이윤종;김희준;안태영;박효식
    • 대한전기학회논문지
    • /
    • 제40권3호
    • /
    • pp.266-274
    • /
    • 1991
  • This paper proposed the resonant DC-DC converter with constant switching frequency. Its output is controlled by the auxiliary switch which is attached in conventional MRC circuits. The average output voltage is equal to the average voltage of the auxiliary switch. If the on time of the auxiliary switch is short, output voltage is decreased. Because of using the multi resonant method, the power loss from the parasitic elements can be decreased. Experimental performance of DF ZVS Forward MRC topology with switching frequency of 1MHz is presented.

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터 (A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method)

  • 김홍신;허영환;문상필;박한석
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

강압형과 하프 브리지 직렬형 DC-DC 컨버터 (Buck and Half Bridge Series DC-DC Converter)

  • 김창선
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

내부 손실 저항이 있는 정상상태 모델을 이용한 LLC 공진형 하프 브리지 dc-dc컨버터의 최적 설계에 관한 연구 (A Study on the Optimal Design of LLC Resonant Half-bridge dc-dc Converter Using a Steady-state Model with Internal Loss Resistors)

  • 유정상;안태영
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.80-86
    • /
    • 2022
  • In this paper, the optimal design and circuit simulation verification results of an LLC resonant half-bridge dc-dc converter using a steady-state model with internal loss resistance are reported. Above all, the input/output voltage gain and frequency characteristic equations in the steady-state were derived by reflecting the internal loss resistance in the equivalent circuit. Based on the results, an LLC resonant half-bridge dc-dc converter with an input voltage of 360-420V, an output voltage of 54V, and a maximum power of 3kW was designed, and to verify the design, the PSIM circuit simulation was executed to compare and analyze the result. In particular, the operating range of the converter could be drawn from the frequency characteristic graph of the voltage gain, and when the converter was operated under light and maximum load conditions, it was confirmed that similar results were obtained by comparing simulation results and calculation results in the switching frequency characteristic graph. In addition, the change of the switching frequency with respect to the load current at each input voltage was compared with the calculated value and the simulation result. As a result, it was possible to confirm the usefulness of the analysis result reflecting the internal loss resistance proposed in this paper and the process of the optimal design.

4kW급 고효율 직렬 공진형 DAB 컨버터 개발 (Development of a 4kW, High Efficiency, Series-Resonant DAB Converter)

  • 이상민;김길동;이승환
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.498-506
    • /
    • 2022
  • This study proposes a design methodology for bidirectional, series-resonant, dual-active bridge (SRDAB) converters. The circuit parameters of the SRDAB converters are designed by considering the output power and efficiency of the converter. The proposed method can be used to design a high-power, high-efficiency SRDAB converter. A voltage controller is employed to manipulate the output voltage of the converter, and the controller gains are selected using the transfer function and frequency response of the controller. Simulation results show that the output power of the designed SRDAB converter is 2 kW per converter module as designed. In addition, the performance of the voltage controller is evaluated using the simulation and experimental results. The output voltage follows the reference voltage within 10 ms under the step change of the reference command. The output voltage also follows the reference voltage under the step load change. The efficiency of the designed SRDAB converter is 95.6%.

변압기 2차측 LLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터 (The Secondary LLC Series Resonant Converter for the Boost DC/DC Converter)

  • 이현관;차인수;이기식;정봉근;강성인;김은수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권8호
    • /
    • pp.423-429
    • /
    • 2006
  • Recently, the high frequency isolated boost DC/DC converter has been widely used for the PCS (Power Conditioning System) system because of its small size and low cost. However, the high frequency isolated boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have the problems such as the high conduction losses and the surge voltage due to the high circulating current and the leakage inductance, respectively. To overcome this problems, in this paper the secondary LLC resonant converter is proposed, and the experimental results of the secondary LLC series resonant converter for boost DC/DC converter are verified on the simulation based on the theoretical analysis and the 700W experimental prototype.

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.