• Title/Summary/Keyword: frequency-to-voltage converter

Search Result 920, Processing Time 0.022 seconds

A 6.78 MHz Constant Current and Constant Voltage Wireless Charger for E-mobility Applications (E-모빌리티 응용을 위한 6.78MHz 정전압 정전류 무선 충전기)

  • Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.142-144
    • /
    • 2019
  • Nowadays, multi-MHz wireless power transfer (WPT) system has received a great concern of study due to its desirable characteristics such as user convenience, system compact and better safety as compared to the conventional DC-DC with cord. This paper presents a solution for WPT Lithium Batteries charger with Constant Current (CC) and Constant Voltage (CV) charging process. The proposed system consists of a high frequency class D power amplifier, a pair of PCB coil, transformable high-order resonant network and a full-bridge rectifier. The charger can be implemented CC /CV charging profile thanks to automatic reconfigurable resonant compensator. Therefore, the battery can be fully charged without the help of an additional DC/DC converter. The simulation and 50W-6.78-MHz hardware experimental results are presented to verify the feasibility of the proposed method and to evaluate the performance of the proposed wireless battery charger.

  • PDF

A New Active Lossless Snubber for Half-Bridge Dual Converter (하프 브릿지 듀얼 컨버터를 위한 새로운 능동형 무손실 스너버)

  • 한상규;윤현기;문건우;윤명중;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.419-426
    • /
    • 2002
  • A new active lossless snubber for half-bridge dual converter(that is called'dual converter') is proposed in this paper It features soft switching(ZVS) as well as turn-off snubbing in both main and auxiliary switches. Therefore, it helps the dual converter to operate at the higher frequency with a higher efficiency and smaller-sized reactive components. Moreover, since it uses parasitic components, such as leakage inductances and switch output capacitances etc, to achieve the ZVS of power switches, it has simpler structure and lower cost of production. The operational principle, theoretical analysis, and design consideration are presented. To confirm the operation, features, and validity of the proposed circuit, experimental results from a 200w, 24V/DC-200V/DC proto-type are presented.

The Broadband Auto Frequency Channel Selection of the Digital TV Tuner using Frequency Mapping Function (주파수 매핑 함수를 이용한 광대역 주파수 자동 채널 선택용 디지털 TV 튜너)

  • 정영준;김재영;최재익;박재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.613-623
    • /
    • 2000
  • Digital TV tuner for 8-VSB modulation was developed with satisfying the requirements of ATSC. The double frequency conversion and the active tracking filter in the front-end were used to reduce interference of the adjacent channels and multi-channels, which suppress If beat and image band. However, it was impossible to get frequency mapping between tracking filter and first VCO(Voltage Controlled Oscillator) in the double conversion digital TV tuner differing from conventional NTSC tuner. This paper, therefore, suggests the available structure and a new method for automatic frequency selection by obtaining the mapping of frequency characteristic over tracking voltage and the combined hardware which compose of Micro-controller, EEPROM, D/A(Digital-to-Analog Converter), OP amp and switch driver to solve above problems.

  • PDF

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

AC-DC Transfer Characteristics of a Bi-Sb Multijunction Thermal Converter (Bi-Sb 다중접합 열전변환기의 교류-직류 변환 특성)

  • 김진섭;이현철;함성호;이종현;이정희;박세일;권성원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.46-54
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter, which is consisted of a linear or bifilar thin film NiCr-heater and a thin film Bi-Sb thermopile, has been fabricated, and its ac-dc transfer characteristics were examined in a frequency range from 10 Hz to 10 KHz. In order to increase the thermal sensitivity and to decrease the ac-dc transfer error of a thermal converter, the heater and the hot junctions of a thermopile were prepared on a Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-diaphragm which acts as a thermal isolation layer, and the cold junctions on the Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-thin film supported with the silicon rim which functions as a heat sink. The respective thermal sensitivities in air and in a vacuum of the converter with a built-in bifilar heater were about 14.0 ㎷/㎽ and 54.0 ㎷/㎽, and the ac-dc voltage and the current transfer difference ranges in air were about $\pm$0.60 ppm and $\pm$0.11 ppm, respectively, indicating that the ac-dc transfer accuracy of the converter are much higher than that of a commercial 3-dimensional multijunction thermal converter. However, the output thermoelectric voltage fluctuation of the converter was rather high.

  • PDF

Development of an Algorithm for Detecting High Impedance Fault in Low Voltage DC Distribution System using Accumulated Energy of Fault Current (고장전류의 누적 에너지를 이용한 저압직류 배전계통의 고저항 지락고장 검출 알고리즘 개발)

  • Oh, Yun-Sik;Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Han, Joon;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.71-79
    • /
    • 2015
  • Recently, new Low Voltage DC (LVDC) power distribution systems have been constantly researched as uses of DC in end-user equipment are increased. As in conventional AC distribution system, High Impedance Fault (HIF) which may cause a failure of protective relay can occur in LVDC distribution system as well. It, however, is hard to be detected since change in magnitude of current due to the fault is too small to detect the fault by the protective relay using overcurrent element. In order to solve the problem, this paper presents an algorithm for detecting HIF using accumulated energy in LVDC distribution system. Wavelet Singular Value Decomposition (WSVD) is used to extract abnormal high frequency components from fault current and accumulated energy of high frequency components is considered as the element to detect the fault. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed algorithm using ElectroMagnetic Transient Program (EMTP) software. Simulation results considering various conditions show that the proposed algorithm can be utilized to effectively detect HIF.

A study on the high frequency resonant inverter for sealing wax using a leaks (누설자속을 이용한 sealing-wax용 고주파 공진 인버터에 관한 연구)

  • Won, J.S.;Kim, D.H.;Noh, C.K.;Min, B.J.;Kim, K.S.;Jung, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1165-1167
    • /
    • 2000
  • This paper describes a current fed high frequency resonant inverter used as the power supply for sealing-wax. The proposed inverter can reduce switching losses, noise and voltage stress at turn-on and turn-off. The analysis of proposed circuit uses normalized parameter and characteristic estimation which is needed in each step before design is generally described according to normalized frequency ($\mu$), coefficient of coupling($\kappa$) and all parameters. The theoretical analysis is proved through experiment and this circuit shows that it can be used practically as the power supply system for sealing wax and DC-DC converter.

  • PDF

An I-V Circuit with Combined Compensation for Infrared Receiver Chip

  • Tian, Lei;Li, Qin-qin;Chang, Shu-juan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.875-880
    • /
    • 2018
  • This paper proposes a novel combined compensation structure in the infrared receiver chip. For the infrared communication chip, the current-voltage (I-V) convert circuit is crucial and important. The circuit is composed by the transimpedance amplifier (TIA) and the combined compensation structures. The TIA converts the incited photons into photocurrent. In order to amplify the photocurrent and avoid the saturation, the TIA uses the combined compensation circuit. This novel compensation structure has the low frequency compensation and high frequency compensation circuit. The low frequency compensation circuit rejects the low frequency photocurrent in the ambient light preventing the saturation. The high frequency compensation circuit raises the high frequency input impedance preserving the sensitivity to the signal of interest. This circuit was implemented in a $0.6{\mu}m$ BiCMOS process. Simulation of the proposed circuit is carried out in the Cadence software, with the 3V power supply, it achieves a low frequency photocurrent rejection and the gain keeps 109dB ranging from 10nA to $300{\mu}A$. The test result fits the simulation and all the results exploit the validity of the circuit.

The Development of a Programmable Single-Phase AC Power Source with a Linear Power Amplifier

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Yoo, Jae-Geun;Son, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.39-46
    • /
    • 2007
  • This paper presents a programmable single-phase ac power source that provides a sinusoidal output voltage with an adjustable output amplitude and frequency over a wide range as well as an arbitrary waveform. The ac power source under consideration have a linear power amplifier. The desired output values can be programmed with a personal computer. The power source operates at 220[V]/60[Hz] mains and the output voltage is isolated from the input circuit. The system consists mainly of a power converter to generate and amplify the waveform signal, a controller to control the desired output signal and measure the output parameters, and a control program to set the desired output and display the values. The prototype ac power source was constructed and tested with the results demonstrating a good performance.

The Design and Implementation of a 5 kW Programmable Three-Phase Harmonic Generator

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Choi, Myoung-Il;Park, Chee-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • This paper presents the design and implementation of a 5kW programmable three-phase harmonic generator, which is capable of generating sinusoidal output voltages with adjustable output amplitude and frequency over a wide range as well as arbitrary waveforms. The considered harmonic generator is a linear power amplifier type. This system consists mainly of a power converter to generate and amplify waveform signals, a controller to control the desired output signal and measure the output parameters including voltage and current, and a control program to set the desired output and display the output values. The prototype programmable three-phase harmonic generator has been constructed and tested. Test results show that the developed programmable three-phase harmonic generator performs well.