• Title/Summary/Keyword: frequency stability

Search Result 1,997, Processing Time 0.024 seconds

Stable Generalized Predictive Control Using Frequency Domain Design (주파수역 설계를 통한 안정한 일반형 예측제어)

  • Yun, Gang-Seop;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.58-66
    • /
    • 2001
  • GPC has been reported as a useful self-tuning control algorithm for systems with unknown time-delay and parameters. GPC is easy to understand and implement, and thus has won popularity among many practicing engineers. Despite its success, GPC does not guarantee is nominal stability. So, in this paper, GPC is rederived in frequency domain instead of in the time domain to guarantee its nominal stability. Derivation of GPC in frequency domain involves spectral factorization and Diophantine equation. Frequency domain GPC control law is stable because the zeros of characteristic polynomial are strictly Schur. Recursive least square algorithm is used to identify unknown parameters. To see the effectiveness of the proposed controller, the controller is simulated for a numerical problem that changes in dead-time, in order and in parameters.

  • PDF

A Study on the Stability Improvement of the Switching Power Supplies - Case of the High Frequency Series Resonant Converter (스위칭전원의 안정도 향상에 관한 연구 -고주파 직렬공진형 컨버터를 중심으로-)

  • 이윤종;김능수
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 1988
  • Conventional pwm switching power supply have the disadvantage some aspects of size, light weight, noise and system stability. High frequency Series Resonant Converter (SRC), described in this paper, almost improve above disadvantages. We use the state plane technique as analysis method. This technique is powerful tool which can clearly analyze the peak stress of the state variables inside the converter, Here, we can define each operation mode from frequency ratio Fsn, switching frequency to resonant frequency, and we analyze the output performance in each operation mode. To verify the theoretical analysis, we compose the actual converter, and the experimental results are compared with analysis.

  • PDF

Seismic Stability Evaluation of Bellows Type Expansion Joints Piping System(350A) (350A 벨로우즈형 신축관이음의 내진특성 평가)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.653-659
    • /
    • 2020
  • In this study, seismic verification of the bellows used in the plant field was conducted. The pressure used in the analysis was analyzed by applying the design pressure of 15.7bar. For the seismic analysis, the natural frequency of the bellows system was obtained and the stability of the system was evaluated by static seismic analysis comparing the lowest order natural frequency with the dominant frequency of 33 Hz. The material of the bellows system is STS304, and the safety factor is obtained in comparison with the allowable stress. For the seismic analysis, the design response spectrum was prepared and the maximum acceleration was applied to the static seismic analysis and the stability of the entire system was confirmed. Compared to the structural analysis results, the maximum stress of the bellows system increased by about 16.4% and the maximum strain increased by about 3 times when seismic analysis was performed.

A Study of Attitude Control and Stability Analysis Using D-Decomposition Stability Area Technique for Launch Vehicle (안정성 영역(Stability Area) 판별법을 이용한 발사체 자세제어 이득 설계 및 자세 안정성 분석)

  • Park, Yong-Kyu;Sun, Byung-Chan;Roh, Woong-Rae;Oh, Choong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.537-544
    • /
    • 2009
  • This paper concerns analysis technique on determining of attitude control gain in the low frequency region using stability area. The stability area is defined by the D-Decomposition method, which was designed by Neimark. In this paper, it is introduced D-Decomposition method from reference paper and design attitude control gain of generic launch vehicle during first stage flight phase. For selecting PD control gain, it is considered the system parameter uncertainty about whole first-stage flight phase, represented the stability area boundary on each case. After deciding the PD control gain using stability area method, it is applied to launch vehicle linear model, and checking the stability margin requirement, frequency response characteristics.

Stability Limit Properties of a Control System on the Space of Adjustable Parameters (조정파라미터 공간에서의 제어계 안정한계 특성)

  • 최순만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.351-356
    • /
    • 2001
  • In this paper, a general one-loop control system was assumed as a model system which has a time-delay element connected with a first order-lag element in series. After the corresponding parameter set causing stability limit condition for the model system was obtained by mathematical procedures, their loci on the parameter space was taken according of frequency change,. The parameter set loci of stability limit showed a specific pattern, and particularly the curves on the Kp-Ti parameter space were able to generalized in the form of an exponential formula. These properties were also compared with the results taken from experimental procedures by Nyquist response method and Ziegler & Nichols method on the time domain, and both results were confirmed to be nearly same.

  • PDF

A Study of System Protection with emphasis on Power System Stability (전력계통 안정도를 고려한 계통보호 대책 연구)

  • Jang, B.T.;Lee, S.Y.;Kim, K.H.;Ahn, J.S.;Yang, J.J.;Kang, G.H.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.99-101
    • /
    • 2002
  • This paper is to introduce the R&D project called "System Protection with emphasis on Power System Stability". The principal objective of this project is protection aids to system stability. The objects of this project arc as follows. First, drawbacks of classical under frequency load shedding and implementation issues of the rate-of-change of frequency will be described. Secondly, the project discusses the possibilities of voltage instability in power system and how this risk will affect protective relays in real system. Lastly, special protection system is designed to preserve system stability for KEPCO.

  • PDF

Stability Analysis of Axially Moving Beam with Attached Mass (축방향으로 이송되는 부가질량을 가진 보의 안정성 해석)

  • Hur, Kwan-Do;Son, In-Soo;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2012
  • The dynamic instability and natural frequency of axially moving beam with an attached mass are investigated. Thus, the effects of an attached mass on the stability of the moving beam are studied. The governing equation of motion of the moving beam with an attached mass is derived from the extended Hamilton's principle. The natural frequencies are investigated for the moving beams via the Galerkin method under the simple support boundary. Numerical examples show the effects of the attached mass and moving speed on the stability of moving beam. Moreover, the lowest critical moving speeds for the simple supported conditions have been presented. The results can be used in the analysis of axially moving beams with an attached mass for checking the stability.

Stability Analysis of Cracked Beams with Subtangential Follower Force and Tip Mass (경사 종동력과 끝질량을 갖는 크랙 보의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;No, Tae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1410-1416
    • /
    • 2009
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a cracked cantilever beams subjected to follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cracked cantilever beam as slenderness ratio and crack severity is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and crack severity on the critical follower force, stability and the natural frequency of a beam are investigated.

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용에 관한 연구)

  • Sohn Chae-Hoon;Moon Yoon-Wan;Ryu Chul-Sung;Kim Young-Mog
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.259-262
    • /
    • 2002
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with various specifications of these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the specific stability characteristics depending on the operating condition and has small dynamic stability margin. The most hazardous frequency is clearly identified through Fast Fourier Transform. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect. Thrust loss caused by baffle installation is about $2{\%}$.

  • PDF

A Study on Chatter Stability of High Speed Spindle (고속 스핀들의 채터 안정선도)

  • Shin, Seong-beom;Lee, Hyun-Hwa;Kim, Ji-S.;Kim, Ji-Yong;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.340-345
    • /
    • 2010
  • This paper presents the chatter stability lobes of high speed spindle of five-axis machine tools. Using a FEM, we obtained the frequency response function of a spindle and the stability lobes for evaluation of chatter. In addition, this paper suggest FRF using by FEM for the prediction of chatter stable region and critical cutting depth. Therefore, critical cutting depth of is 1.3586mm and X, Y direction's chatter frequency is 901Hz and 900Hz, respectively.