• 제목/요약/키워드: frequency response function

Search Result 1,053, Processing Time 0.031 seconds

A Study on the Identification of Vibration Sources of a Gasoline Engine by Multi-Dimensional Spectral Analysis (다차원 스펙트럼 해석 에 의한 가솔린 엔진 의 진동원 검출 에 관한 연구)

  • 강명순;오재응;서상현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.691-698
    • /
    • 1985
  • This paper presents a method for the identification of vibration sources in a multiple input system where the input source may be coherent with each other. Using multi-dimensional spectral analysis, it is found that one of the most significant vibration sources of a gasoline engine is the pressure variation within the cylinder. In this analysis the concepts of residual spectral analysis and the partial coherence function are applied. Finally, the overall levels of the acceleration on the cylinder block obtained by multi-dimensional spectral analysis are compared with those by the frequency response function approach. The experimental results have shown a good agreement with the results calculated by this method the input sources are coherent strongly each other.

Identification of Damping Matrix for a Steel Bar by the Genetic Algorithm (유전알고리즘에 의한 강봉의 감쇠행렬 산출법)

  • Park, Sok-Chu;Park, Young-Bum;Park, Kyoung-Il;Je, Hye-Kwang;Yi, Geum-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.271-277
    • /
    • 2011
  • An identification method of the structural damping matrix for a steel bar by the genetic algorithm is proposed. Supposing the damping matrix were in proportion to the stiffness matrix, the proportional factors can be identified from the curve fitting of the experimental frequency response function(FRF) by the genetic algorithm. Applying the identified damping matrix to FEM of a beam model, the values of the objective function could be reduced to about 1/60 in comparison with conventional FEM model without damping. The damping matrices of some sub-structures which have large damping partly could be identified by the algorithm, and they could be used as some parts of the FEM model for a whole structure.

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

Mode Truncation Method in Frequency Response Analysis (주파수 응답해석의 모드 축약법)

  • Cho, Tae-Min;Lee, Eun-Kyoung;Seo, Hwa-Il;Rim, Kyung-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2002
  • In the frequency response analysis using a modal method, it is very important to determine the number of modes involved with the formulation of a frequency response function. Most engineers are inclined to determine mode truncation with their experience. But it is difficult for non-experts to decide the mode truncation reasonably in many problems of dynamic analyses. In this study, fuzzy theory is used to standardize the empirical determination of mode truncation so that not only the experts but also non-experts can decide a Proper mode truncation easily. Fuzzy rule base is based on the simulation results using finite element method. Numerical simulations show that the developed mode truncation method is a very effective method to choose the number of the considered modes.

Dynamic System Identification Using the Topology Optimization Method (위상최적설계 기법을 이용한 동적 시스템 규명)

  • Lee, Joong-Seok;Kim, Jae-Eun;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.120-123
    • /
    • 2005
  • A dynamic system identification technique based on the topology optimization method is developed. The specific problem in consideration is the damage location identification of a plate structure using the Frequency Response Function (FRF) of a damaged structure. In this work, the identification problem is formulated as a topology optimization problem. The importance of using anti-resonance information in addition to using resonance information is addressed. Though a simple problem was considered here, the possibility of using the topology optimization for damage identification is investigated lot the first time.

  • PDF

Novel techniques for improving the interpolation functions of Euler-Bernoulli beam

  • Chekab, Alireza A.;Sani, Ahmad A.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • In this paper, the efficiency and the accuracy of classical (CE) and high order (HE) beam element are improved by introducing two novel techniques. The first proposed element (FPE) provides an alternative for (HE) by taking the mode shapes of the clamped-clamped (C-C) beam into account. The second proposed element (SPE) which could be utilized instead of (CE) and (HE) considers not only the mode shapes of the (C-C) beam but also some virtual nodes. It is numerically proven that the eigenvalue problem and the frequency response function for Euler-Bernoulli beam are obtained more accurate and efficient in contrast to the traditional ones.

Experimental Verification of the Structural Damage Identification Method Developed for Beam Structures (보 구조물에 대한 손상규명기법의 실험적 검증)

  • Cho, Kook-Lae;Shin, Jin-Ho;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2574-2580
    • /
    • 2002
  • In this paper, an experimental verification has been conducted for the frequency response function (FRF)-based structural damage identification method (SDIM) proposed for beam structures. The FRF-based SDIM requires the natural frequencies and mode shapes measured in the intact state and the FRF-data measured in the damaged state. Experiments are conducted for the cantilevered beam specimens with one slot and with three slots. It is shown that the proposed FRF-based SDIM provides damage identification results that agree quite well with true damage state.

Damage detection from the variation of parameter matrices estimated by incomplete FRF data

  • Rahmatalla, Salam;Eun, Hee-Chang;Lee, Eun-Taik
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2012
  • It is not easy to experimentally obtain the FRF (Frequency Response Function) matrix corresponding to a full set of DOFs (degrees of freedom) for a dynamic system. Utilizing FRF data measured at specific positions, with DOFs less than that of the system, as constraints to describe a damaged system, this study identifies parameter matrices such as mass, stiffness and damping matrices of the system, and provides a damage identification method from their variations. The proposed parameter identification method is compared to Lee and Kim's method and Fritzen's method. The validity of the proposed damage identification method is illustrated in a simple dynamic system.

Vibration-based Identification of Directional Damages in a Cylindrical Shell

  • Kim, Sung-Hwan;Oh, Hyuk-Jin;Lee, U-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.178-188
    • /
    • 2005
  • This paper introduces a structural damage identification method to identify 4he multiple directional damages generated within a cylindrical shell by using the measured frequency response function (FRF). The equations of motion for a damaged cylindrical shell are derived. by using a theory of continuum damage mechanics in which a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness. In contrast with most existing vibration-based structural damage identification methods which require the modal Parameters measured in both intact and damaged states, the present method requires only the FRF-data measured at damaged state. Numerically simulated damage identification tests are conducted to verify the feasibility of the Proposed structural damage identification method.

System Identification of a Three-Story Test Structure based on Finite Element Model (유한요소모델에 기초한 3층 건물모델의 시스템 식별)

  • Kang, Kyung-Soo;Lee, Sang-Hyun;Joo, Seok-Jun;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.72-77
    • /
    • 2003
  • In this paper, an experimental verification of system identification technique for constructing finite element model is conducted for a three-story test structure equipped with an active mass driver (AMD). Twenty Gaussian white noises were used as the input for AMD, and the corresponding accelerations of each floors are measured. Then, the complex frequency response function (FRF) for the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters and system matrices were estimated. The magnitudes as well as phase of experimentally obtained FRFs match well with those of analytically obtained FRFs.

  • PDF