• Title/Summary/Keyword: frequency offset estimation

Search Result 192, Processing Time 0.036 seconds

Ranging Enhancement using Frequency Offset Compensation in High Rate UWB (고속 UWB에서 주파수 편이 보상을 사용한 거리추정 성능향상)

  • Nam, Yoon-Seok;Jang, Ik-Hyeon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.229-236
    • /
    • 2009
  • UWB signal with high resolution capability can be used to estimate ranging and positioning in wireless personal area networks. The clock frequency differences of nodes have serious affects on asynchronous ranging methods to estimate locations of mobile nodes. The specification of high rate UWB describes successive TWR method with the estimation of a relative clock frequency offset. In this paper, we complete the ranging equations using relative frequency offset and time information, and propose a method to estimate the exact frequency offsets. We evaluate the ranging algorithms with simulation. The results show that the performances of the algorithms using frequency offsets are very close without noise. But, at noise environment, the method of exact frequency offsets shows better performance than that of relative frequency offsets.

A Study of Iterative Channel Estimation and Equalization Scheme of FBMC/OQAM in a Frequency Oversampling Domain (FBMC/OQAM 시스템의 주파수 과표본 영역에서의 반복적인 채널 추정 및 등화 기법에 관한 연구)

  • Won, YongJu;Oh, JongGyu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.391-403
    • /
    • 2016
  • FBMC/OQAM(Filterbank multicarrier on offset-Quadrature Amplitude Modulation) system is a multicarrier modulation which is not need to use cyclic prefix(CP). The CP of OFDM/QAM (orthogonal frequency division multiplexing on Quadrature Amplitude Modulation) system decreases data transmission rate. However, SER(symbol error rate) performance of FBMC/OQAM system is worse than OFDM/QAM system with frequency 1-tap equalization scheme in the frequency selective channel. In this paper, an iterative channel estimation and equalization scheme is performed in a frequency oversampling domain about each sub-channel of FBMC/OQAM system and SER performance using computer simulation is shown. Using the proposed scheme, the SER performance approaches to that of OFDM/QAM system in a frequency selective channel.

Improved time and frequency synchronization for dual-polarization OFDM systems

  • Ninahuanca, Jose Luis Hinostroza;Tormena Jr., Osmar;Meloni, Luis Geraldo Pedroso
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.978-990
    • /
    • 2021
  • This article presents techniques for improved estimation of symbol timing offset (STO) and carrier frequency offset (CFO) for dual-polarization (DP) orthogonal frequency division multiplex (DP-OFDM) systems. Recently, quaternion multiple-input multiple-output OFDM has been proposed for high spectral efficiency communication systems, which can flexibly explore different types of diversities such as space, time, frequency, and polarization. This article focuses on synchronization techniques for DP-OFDM systems using a cyclic prefix, where the application of quaternion algebra leads to new improved estimators. Simulations performed for DP system methods show faster reduction of STO estimator variance with a double-slope line in the logvariance line versus signal-to-noise ratio (SNR) plot compared with singlepolarization (SP) counterparts, and simulations for CFO estimates show a 3-dB gain of DP over SP estimates for same SNR values defined, respectively, for quaternion-valued or complex-valued signals. Cramer-Rao bounds for STO and CFO are derived for the synchronization methods, correlating with the observed gains of DP over SP OFDM systems.

Fourier Transform-Based Phasor Estimation Method Eliminating the Effect of the Exponentially Decaying DC offsets (지수 감쇄하는 DC 옵셋 영향을 제거한 푸리에 변환 기반 페이져 연산 기법 기법)

  • Lee, Dong-Gyu;Kim, Cheol-Hun;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1485-1490
    • /
    • 2008
  • This paper proposes a new Fourier transform-based phasor estimation method to eliminate the adverse influence of the exponentially decaying dc offsets when Discrete Fourier Transform (DFT) is used to calculate the phasor of the fundamental frequency component in a relaying signal. By subtracting the result of odd-sample-set DFT from the result of even-sample-set DFT, the information of dc offsets can be obtained. Two dc offsets in a relaying signal are treated as one dc offset which is piecewise approximated in one cycle data window. The effect of the dc offsets can be eliminated by the approximated dc offset. The performance of the proposed algorithm is evaluated by using computer-simulated signals and EMTP-generated signals. The algorithm is also tested on a hardware board with TMS320C32 microprocessor. The evaluation results indicate that the proposed algorithm has the stable and accurate eliminating performance even if the input signal contains two decaying dc components having different time constants.

Distance Relaying Algorithm Using a DFT-based Modified Phasor Estimation Method (DFT 기반의 개선된 페이저 연산 기법을 적용한 거리계전 알고리즘)

  • Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1360-1365
    • /
    • 2010
  • In this paper, we propose a distance relaying algorithm using a Discrete Fourier Transform (DFT)-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Most distance relays are based on estimating phasors of the voltage and current signals. A DFT is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. For this reason, distance relays have a tendency to over-reach or under-reach in the presence of DC offset components in a fault current. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. The error due to DC offsets in a DFT is calculated and eliminated using the outputs of an even-sample-set DFT and an odd-sample-set DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated for a-phase to ground faults on a 345 kV, 50 km, simple overhead transmission line. The Electromagnetic Transient Program (EMTP) is used to generate fault signals. The evaluation results indicate that adopting the proposed algorithm in distance relays can effectively suppress the adverse influence of DC offsets.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Frequency Offset Correction Scheme for an OFDM-Based Mobile Communication System (OFDM 통신 시스템에서의 주파수 오차 보상 방안)

  • Kim, Sung-Won;Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.195-196
    • /
    • 2006
  • Frame synchronization is an critical factor for an effective operation of OFDM (orthogonal frequency division multiplexing) based communication systems. In this paper, we present and analyze an efficient frame synchronization method based on m-sequence for OFDM-based mobile multimedia communication systems. The cyclic extension preceding OFDM frames is of decisive importance for this method. The m-sequence is added directly to cyclic extension signal in the time domain. By utilizing the autocorrelation characteristics of m-sequence, efficient frame synchronization can be achieved. And we also consider frequency offset estimation simultaneously. The proposed frame synchronization method can be applied to the OFDM-based mobile multimedia communication systems.

  • PDF

Design of Automatic Frequency Control Algorithm for DS-SS RTLS Modem (RTLS DS-SS모뎀의 주파수 동기 알고리즘 설계)

  • Kim, Byung-Gun;Lim, Jong-Tae;Park, Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.874-881
    • /
    • 2008
  • This paper presents an automatic frequency control algorithm for RTLS DS-SS modem based on the standard of ISO/IEC 24730-2. The presented automatic frequency control algorithm consists of frequency acquisition mode and frequency tracking mode, and the frequency acquisition mode is divided into the angle estimation step for frequency offset estimation and the verification step for removing the angle ambiguity. In the angle estimation step, three different sub-bit angles are estimated according to the timing intervals, then the estimates are used to re move the angle ambiguity in the verification step. The theoretical analysis and the simulation results of the proposed frequency control algorithm are presented.

Quality Measurement Algorithm for IS-95 Reverse-link Signal (IS-95 역방향링크 신호의 품질 측정 알고리즘)

  • Kang, Sung-Jin;Kim, Nam-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3428-3434
    • /
    • 2010
  • In this paper, we proposed and implemented a quality measurement algorithm for IS-95 reverse-link signal. To measure the quality of the received signal, equalization, carrier frequency/phase offset estimation, and timing synchronization are essential. And, all signal processing are carried out with baseband signal. The equalizer works with 4-oversampled samples to remove ICI(InterChip Interference). The frequency/phase offset estimator is followed by timing synchronizer since it can work without aid of data and timing information. As the number of interpolation in timing synchronization increases, the measurement accuracy improves, but computation load increases simultaneously. Therefore, one need to choose adequately the number of interpolation regarding to the platform performance to be used for the proposed algorithm.

Estimation of GPS Holdover Performance with Ladder Algorithm Used for an UFIR Filter (UFIR 필터 Ladder 알고리즘 이용 GPS Holdover 성능 추정)

  • Lee, Young-kyu;Yang, Sung-hoon;Lee, Chang-bok;Heo, Moon-beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.669-676
    • /
    • 2015
  • In this paper, we described the simulation results of the phase offset performance of a clock in holdover mode which was normally operated in GPS Disciplined Oscillator (GPSDO). In the TIE model, we included the time error term caused by environmental temperature variation because one of the most important parameters of clock phase error is the frequency offset and drift caused by the variation of temperature. For the simulation, we employed Maximum Time Interval Error (MTIE) for the performance evaluation when the frequency offset and drift are estimated by using an Unbiased Finite Impulse Response (UFIR) filter with ladder algorithm. We assumed that the noise in the GPS measurement is white Gaussian with zero mean and 1 ns standard deviation, and temperature linearly varies with a slope of $1{^{\circ}C}$ per hour. From the simulation results, the followings were observed. First, with the estimation error of temperature of less than 3 % and the temperature compensation period of less than 900 seconds, the requirement of CDMA2000 phase synchronization under 10 us could be achieved for more than 40,000 seconds holdover time if we employ an OCXO (Oven Controlled Crystal Oscillator) clock. Second, in order to achieve the requirement of LTE-TDD under 1.5 us for more than 10,000 seconds holdover time, below 3 % estimation error and 500 seconds should be retained if a Rubidium clock is adopted.