• 제목/요약/키워드: frequency calibration

Search Result 348, Processing Time 0.021 seconds

KOMPSAT-2 검보정을 위한 MSC Pan에 대한 NUC 적용과 결과 분석 (Applications of MSC Pan Nuc for RAdiometric Cal/Val of KOMPSAT-2)

  • 송정헌;서두천;이동한;임효숙
    • 항공우주기술
    • /
    • 제6권1호
    • /
    • pp.209-212
    • /
    • 2007
  • 복사 보정에 해당하는 NUC(Non-Uniformity Correction)은 MSC 각각의 픽셀들이 가지는 상이한 특성을 균일한 이미지를 얻기 위해 수행하는 작업이다. KOMPSAT-2의 MSC는 각 CCD pixel 별, 각 band 별 특성, 감도 및 시간에 따른 변화, CCD Geometry 등에 의해 왜곡 현상이 일어나게 된다. 검보정 과정에서는 위성 발사 전에 실험실에서의 충분한 실험과 Calibration 작업을 통해 얻어진 값들을 사용하여 Image Restoration, 상대 복사 보정, 절대 복사 보정 등의 작업들을 거쳐서 왜곡 현상을 보정하게 된다. 본 논문에서는 KOMPSAT-2의 NUC(HF NUC & LF NUC) 알고리즘을 이용하여 Panchromatic 밴드의 raw image의 NUC 보정작업 과정과 그 결과에 대해서 소개하고자 한다.

  • PDF

표준 마이크로폰 감도 교정을 위한 진동막의 모달 파라미터 측정 (Modal Parameter Estimation of Membrane for Standard Microphone Sensitivity Calibration)

  • 권휴상;서상준;서재갑;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.298-302
    • /
    • 2002
  • Equivalent volume estimation of the coupler and two coupled microphones has a key role in standard microphone pressure calibration. The equivalent volume of the microphone is determined by the dynamic characteristics of the diaphragm system and front cavity. Therefore the modal parameters of diaphragm system - natural frequency and damping fatter - should be measured explicitly for the estimation of the equivalent volume. The diaphragm system is composed of the vibrating diaphragm, back slit behind diaphragm, pressure equalization vent, and front cavity which are acoustically coupled. In the measurement, the electrostatic actuator was used to excite the system with the swept sine, and the frequency response was obtained. The close actuator in front of the diaphragm must influence the radiation impedance of the system, and then the modal parameters. From the measured frequency response, the natural frequency and the damping factor could be estimated with the Complex exponential method based on the Prony model and the zero crossing real and imaginary plot.

  • PDF

초음파 탐촉자의 교정 시스템 개발 (Development of Calibration System for Contact Transducer)

  • 남영현;성운학
    • 비파괴검사학회지
    • /
    • 제19권4호
    • /
    • pp.294-299
    • /
    • 1999
  • 본 논문에서는 로타(rotor)의 초음파 탐상 결과의 신뢰성을 향상시키기 위하여 수직탐촉자에 대한 교정시스템을 개발하였다. 본 시스템은 신호처리부 (오실로스코프, 스펙트럼 분석기, 송/수신기), 표준시험편 프로그램으로 구성되어 있으며, 교정을 위한 신호처리는 높은 정밀도로 빠르게 수행할 수 있도록 구성되어 있다. 개발된 시스템을 이용하여 로타 검사에 사용되고 있는 초음파 탐촉자를 교정하고 있으며, 신뢰성 있는 정밀도와 감도를 얻을 수 있었다.

  • PDF

가속도계 정밀 위상 교정 시스템 (Precision Phase Calibration System of Accelerometers)

  • 이용봉;정성수;진종한
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.585-590
    • /
    • 2011
  • Accelerometers have been exploited widely in various fields from monitoring vibration of precision machines to detecting an earthquake wave. The precision calibration of the accelerometers is required to maintain the measurement reliability when measuring the vibration of objects with accelerometers for modal analysis. Among evaluation factors for determining sensitivity of accelerometers, phase delay term should be also considered for accurate calibration. In this paper, a new calibration system of accelerometers capable of measuring phase delay as well as magnitude of its sensitivity was proposed and realized in the frequency range of 20 Hz to 5 kHz.

Accurate Camera Self-Calibration based on Image Quality Assessment

  • Fayyaz, Rabia;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • 제25권2호
    • /
    • pp.41-52
    • /
    • 2018
  • This paper presents a method for accurate camera self-calibration based on SIFT Feature Detection and image quality assessment. We performed image quality assessment to select high quality images for the camera self-calibration process. We defined high quality images as those that contain little or no blur, and have maximum contrast among images captured within a short period. The image quality assessment includes blur detection and contrast assessment. Blur detection is based on the statistical analysis of energy and standard deviation of high frequency components of the images using Discrete Cosine Transform. Contrast assessment is based on contrast measurement and selection of the high contrast images among some images captured in a short period. Experimental results show little or no distortion in the perspective view of the images. Thus, the suggested method achieves camera self-calibration accuracy of approximately 93%.

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

Evaluation of Phase Calibration Performance with KVN

  • Jung, Dawoon;Sohn, Young-Jong;Byun, Do-Young;Jung, Taehyun
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.36.2-36.2
    • /
    • 2016
  • In mm-VLBI, the quality of observation data is largely affected by atmospheric effect. The most challenging matter is that the phase of correlator output fluctuates rapidly resulting from a variation of atmospheric propagation delay. Consequently, it is demanding to achieve high Signal-to-Noise ratio by integrating data in time domain before calibrating atmospheric delay. However, Korean VLBI Network (KVN) has a unique system to make a 4-frequency (22/43/86/129 GHz) simultaneous observation in mm-wavelength and Frequency Phase Transfer (FPT) calibration technique has effectively removed atmospheric delay in the simultaneous multi-frequency observation of the KVN. For astrometric and astrophysical studies, we evaluated the FPT performance of KVN in various observing conditions. Using the total 38 bright AGNs, we have compared atmospheric conditions such as ground-based weather information, system temperature, atmospheric delay with the calibration results of FPT at 22/43/86/129 GHz during the five experiments in 2013, and quantified its performance in terms of coherence function and Allan variance. We present the analysis result of the relation between the FPT performance and observing conditions.

  • PDF

근적외선 분광 분석을 위한 음향광학변조필터의 설계 및 교정 (Design and Calibration of Acousto-Optic Tunable Filter(AOTF) for Near Infrared Spectral Analysis)

  • 유장우;김대석;곽윤근;김수현;이윤우;황인덕
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1697-1702
    • /
    • 2004
  • In this paper, we proposed the design and calibration method for the near infrared Acousto-Optic Tunable Filter (AOTF). The theory and design principles of AOTF for the visible light are well known since I.C.Chang has developed the parallel tangent condition for the non-collinear AOTF. Deflection angle, frequency-wavelength relation, spectral resolution, etc. were calculated based on the theory of AOTF. From this result, important parameters - incident and acoustic angle - to fabricate AOTF were decided. We measured the spectral resolution and the relation between electrical driving frequency and the Optical wavelength of diffracted light to calibrate the near infrared AOTF. About 40 ∼ 80 MHz electrical frequency was required to get 1200 ∼ 2200 nm near infrared light. Spectral resolution was less than 10 nm in the near infrared region.

가역방법에 의한 표준 마이크로폰 음압교정의 불확도 (Uncertainties in Pressure Calibration of Laboratory Standard Microphones by Reciprocity Technique)

  • 서상준;권휴상;이용봉;서재갑
    • 한국음향학회지
    • /
    • 제23권2호
    • /
    • pp.90-102
    • /
    • 2004
  • 교정 및/또는 시험기관은 국제상호인증협정 (Global Mutual Recognition Arrangement)에 따라 ISO 17025[1]의 경영요건 및 기술요건의 제반 조건 또는 이와 동등한 조건을 충족시켜야 한다. ISO 17025의 기술요건을 기술한 제 5장, 제 5.10.4 절은 교정성적서 (Calibration Certificate)에 대한 요구사항을 제시하고 있는데, 이들 중 하나가 측정 불확도 (Uncertainty of Measurement)를 교정성적서에 명시하여야 하는 것이다. 본 논문에서는 표준 마이크로폰의 가역교정에 따른 제반 불확도 요인을 측정 또는 계산하여 표준 마이크로폰의 교정에 대한 측정 불확도를 계산하였다. 중간 주파수 영역에서 1인치 및 1/2 인치 마이크로폰의 경우 확장불확도는 0.03 dB 였으며 20 Hz에서는 각각 0.10 dB과 0.11 dB, 고주파에서는 각각 0.07 dB와 0.08 dB까지 증가한다.

The Power of Simultaneous Multi-frequency Observations for mm-VLBI: Beyond Frequency Phase Transfer

  • Zhao, Guang-Yao;Algaba, Juan Carlos;Lee, Sang Sung;Jung, Taehyun;Dodson, Richard;Rioja, Maria;Byun, Do-Young;Hodgson, Jeffrey;Kang, Sincheol;Kim, Dae-Won;Kim, Jae-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Miyazaki, Atsushi;Park, Jong-Ho;Trippe, Sascha;Wajima, Kiyoaki
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.46.2-46.2
    • /
    • 2017
  • Atmospheric propagation effects at millimeter wavelengths can significantly alter the phases of radio signals and reduce the coherence time, putting tight constraints on high frequency Very Long Baseline Interferometry (VLBI) observations. In previous works it has been shown that non-dispersive (e.g. tropospheric) effects can be calibrated with the frequency phase transfer (FPT) technique. The coherence time can thus be significantly extended. Ionospheric effects, which can still be significant, remain however uncalibrated after FPT, as well as the instrumental effects. In this work, we implement a further phase transfer between two FPT residuals (i.e. so-called FPT2) to calibrate the ionospheric effects based on their frequency dependence. We show that after FPT2, the coherence time at 3 mm can be further extended beyond 8 hours, and the residual phase errors can be sufficiently canceled by applying the calibration of another source, which can have a large angular separation from the target (> $20{\circ}$). Calibrations for all-sky distributed sources with a few calibrators are also possible after FPT2. One of the strengths and uniqueness of this calibration strategy is the suitability for high frequency all-sky survey observations including very weak sources. We discuss the introduction of a pulse calibration system in the future to calibrate the remaining instrumental effects and allowing the possibility of imaging the source structure at high frequencies with FPT2, where all phases are fully calibrated without involving any sources other than the target itself.

  • PDF