• Title/Summary/Keyword: frequency and mode

Search Result 4,225, Processing Time 0.029 seconds

Free Vibration of a Thin Circular Cylindrical Shell in Fluid (유체중의 얇은 원통쉘의 자유진동)

  • Liang, G.H.;Kawatate, K.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.117-125
    • /
    • 1991
  • Two methods are presented to calculate the natural frequency of an elastic thin circular cylindrical shell vibrating in fluid. Both of them give the natural frequency in analytical expression One is in a simple form and suitable for higher deformation mode of the shell. Another seems to be exact and be used to a case of the shell partially immersed in fluid. When the shell is fully immersed in fluid results show: fur the lower deformation mode of the shell, the surrounding fluid has remarkable effect upon the natural frequency; for the higher mode, the fluid effect becomes small. When the shell is partially immersed in fluid. it does not occur always that the greatest effect take place at the lowest deformation mode.

  • PDF

Fabrication and Output Characteristics of a High-Speed Wavelength Swept Mode-Locked Laser (고속 파장가변 모드잠김 레이저의 제작 및 출력특성)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1117-1121
    • /
    • 2007
  • We demonstrate a wavelength swept mode-locked ring laser for the frequency domain optical coherence tomography(FD OCT). A laser is constructed by using a semiconductor optical amplifier, fiber Fabry-Perot tunable filter and 2.6 km fiber ring cavity. Mode-locking is implemented by 2.6 km fiber ring cavity for matching the fundamental or harmonic of cavity roundtrip time to a sweep period. The wavelength sweeps are repetitively generated with the repetition period of 77.2 kHz which is the parallel resonance frequency of Fabry-Perot tunable filter for the low driving current consumption of the fiber Fabry-Perot tunable filter. The wavelength tuning range of the laser is more than FWHM of 61 nm centered at the wavelength of 1320 nm and the linewidth of the source is $0.014{\pm}0.002$ nm.

Mode conversion in nondestructive nonlinear acoustic method for defect detection in a layer-structured material

  • Roh Heui-Seol;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.219-222
    • /
    • 2001
  • Nondestructive nonlinear acoustic method in two dimensions is suggested as a useful tool for detecting defects in a composite layer-structured material. Spectrum level changes in fundamental and harmonic frequencies are observed in the presence of a layer type defect compared with in the absence of such a defect. It is proposed in this study that such spectrum changes we due to the mode conversion. The layer type defect makes different normal modes due to different boundary conditions in the thickness direction for the Lamb waves propagating in a layer-structured material. Specifically, the normal mode with the fundamental frequency in the case of the water-layer gap is converted to the normal mode with the second harmonic frequency in the case of the air-layer gap.

  • PDF

FEM Analysis of 3-Dimensional Vibration Mode for Windmill type Ultrasonic Motors (풍차형 초음파 전동기에 대한 3차원 진동모드의 유한요소해석)

  • Kim, Woo-Tae;U, Sang-Ho;Shin, Soon-In;Kim, Jin-Soo;Sa, Jeong-Woo;Kim, Ki-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.110-113
    • /
    • 2001
  • In this paper, vibration mode of Windmill type Ultrasonic Motors was analysed. We used the ANSYS program to analysis by FEM. Vibration Mode express 20 modes as each resonance frequency. We bind nearly same modes and compress 5 modes. Windmill type Ultrasonic Motor's rotation is generated the friction of rotor at top endcap. Thus, We will find the best driving frequency that generating large friction at top endcap.

  • PDF

Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries

  • Cho, Dae Seung;Kim, Byung Hee;Kim, Jin-Hyeong;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.117-126
    • /
    • 2016
  • In this paper, a numerical procedure for the natural vibration analysis of plates with openings and carlings based on the assumed mode method is extended to assess their forced response. Firstly, natural response of plates with openings and carlings is calculated from the eigenvalue equation derived by using Lagrange's equation of motion. Secondly, the mode superposition method is applied to determine frequency response. Mindlin theory is adopted for plate modelling and the effect of openings is taken into account by subtracting their potential and kinetic energies from the corresponding plate energies. Natural and frequency response of plates with openings and carlings subjected to point excitation force and enforced acceleration at boundaries, respectively, is analysed by using developed in-house code. For the validation of the developed method and the code, extensive numerical results, related to plates with different opening shape, carlings and boundary conditions, are compared with numerical data from the relevant literature and with finite element solutions obtained by general finite element tool.

Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant (대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진)

  • Bang, Kyung-Bo;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

UE Measurement Based Compressed Mode in WCDMA (WCDMA 시스템에서 단말 측정에 의한 압축 모드 방법)

  • 김선명;장원학;조영종;임재성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.814-827
    • /
    • 2004
  • The compressed mode is used to perform inter-frequency and inter-system handover in WCDMA. The instantaneous transmit power is increased in the compressed frame in order to keep the QoS(Quality of Service) unaffected by the reduced processing gain. Furthermore, since the inner loop power control is not active during the transmission gap and the effect of interleaving is decreased, a higher Eb/No target is required, which directly affects the system performance. Due to the impact on performance, the compressed mode should be activated by the RNC(Radio Network Controller) only when there is real need to execute an inter-frequency or inter-system handover. However, 3GPP does not define the method that decides the compressed mode activation. In order to reduce performance degradation, there is need the decision method. In this paper, we consider a combined cell structure in which some neighbor cells have a frequency the same as serving cell and the others have a different frequency or system. Under consideration, we analyze the effect of the compressed mode on the WCDMA forward link performance. In order to avoid performance degradation, we propose an UE(User Equipment) measurement method that can restrict the activation area of the compressed mode of UE that does not need it and evaluate its performance by simulations. Analytical results show that the use of the compressed mode affects the performance degradation. And simulation results show that proposed method leads to better performance.

Analysis of Current Mode Controlled Zero Voltage Switching Half Bridge PWM Converter (전류모드로 제어되는 영전압 스위칭 하프 브리지 PWM 컨버터의 해석)

  • 정영석;권순재
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • There exist the high frequency components, which can not be predicted by the low frequency model, due to the presence of sampling effect in current mode control. In this paper, the output voltage equations for the ZVS half bridge PWM convertor are derived from the steady state analysis, and the sampling gain presented in the current control loop is Investigated to improve the Prediction Performance of low frequency model of ZVS half bridge PWM converter.

A study on frequency response of two-mass system for gyroscope applications (각속도계 적용을 위한 이중 질량 시스템의 주파수 응답에 관한 연구)

  • Hwang, Young-Suk;Jung, Hyoung-Kyoon;Song, Eun-Seok;Baek, Chang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.154-155
    • /
    • 2007
  • This paper describes frequency response of two-mass system for gyroscope applications. The two-mass system of the proposed device is adapted to the sensing part of the gyroscope in this research. Two-mass system has two resonant peaks and wide flat region between two resonant peaks. The resonant frequency of driving part is in this flat region. Therefore, frequency tuning is not necessary for mode matching. In the proposed device, resonant frequency is designed as 7183 Hz in driving part. Mass ratio of two masses in sensing part is 0.1 and device size is 6 mm $\times$ 6 mm. The device is fabricated by SiOG process. The fabricated spring width is increased from $4{\mu}m$ to $4.5{\sim}4.7{\mu}m$, and the measured resonant frequency is 8392 Hz in driving mode. We operated the sensing part using parallel plate of proof mass to verify the sensing part. It is confirmed the device has a wide fiat region in frequency response curve and the resonant frequency of the driving part is in the wide flat region of sensing mode.

  • PDF

Prediction of elastic constants of Timoshenko rectangular beams using the first two bending modes

  • Chen, Hung-Liang (Roger);Leon, Guadalupe
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.657-668
    • /
    • 2021
  • In this study, a relationship between the resonance frequency ratio and Poisson's ratio was proposed that can be used to directly determine the elastic constants. Using this relationship, the frequency ratio between the 1st bending mode and 2nd bending mode for any rectangular Timoshenko beam can be directly estimated and used to determine the elastic constants efficiently. The exact solution of the Timoshenko beam vibration frequency equation under free-free boundary conditions was determined with an accurate shear shape factor. The highest percent difference for the frequency ratio between the theoretical values and the estimated values for all the beam dimensions studied was less than 0.02%. The proposed equations were used to obtain the elastic constants of beams with different material properties and dimensions using the first two measured transverse bending frequencies. Results show that using the equations proposed in this study, the Young's modulus and Poisson's ratio of rectangular Timoshenko beams can be determined more efficiently and accurately than those obtained from industry standards such as ASTM E1876-15 without the need to test the torsional vibration.