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Nondestructive nonlinear acoustic method in two dimen-
+10n8 is suggested as a useful tool for detecting defects in a
tomposite layer-structured material. Spectrum level changes
i1 fundamental and harmonic frequencies are observed in the
] resence of a layer type defect compared with in the absence
«f such a defect. It is proposed in this study that such spec-
t ‘um changes are due to the mode conversion. The layer type
¢ efect makes different normal modes due to different bound-
zry conditions in the thickness direction for the Lamb waves
| ropagating in a layer-strectured material. Specifically, the
1 ormal mode with the fundamental frequency in the case of
t 1e water-layer gap is converted to the normal mode with the
s 'cond harmonic frequency in the case of the air-layer gap.

I. INTRODUCTION

Nondestructive nonlinear acoustic diagnosis, as sup-
[ lementary acoustic evaluation method in addition to
r andestructive linear acoustic method, attracts much at-
v:mtionr in its applications [1-4]. The crack existence
v mainly detected with the nonlinear harmonic obser-
vition in nondestructive nonlinear acoustic evaluation
1.ethod. This technique can be extended to a crack de-
; ction method in the two-dimensional plate-type struc-
; wes and layered plate-type structures. Lamb waves in
) ate, which are the mixed waves of longitudinal and
» ansverse waves in plane duct, is used to detect the de-
‘tct. The essential point in nonlinear acoustic evaluation
¢ that the second and higher harmonic modes of incident
1 aves are generated from a defect. The exact reason for
@ spectrum level increase in the harmonic frequency
11d the spectrum level decrease in the fundamental fre-
1tency is not clarified yet. In this paper, such a rea-
i n is suggested by the normal mode conversion process
> Lamb waves. The normal mode conversion of Lamb
vaves on the edge reflection {5] may be extended to the
1 ode conversion in a layer-structured material.

II. LAMB WAVE THEORY

When an acoustic source is applied to a thin plate,
4 custic waves propagating in solid plate material with
» essure release boundaries in both sides are normally

mixed with the longitudinal and transverse waves and
are called Lamb waves.

The equation of motion for a homogeneous, isotropic,
linearly elastic body is given by
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where % is the particle displacement vector, p is the den-
sity, # and A are the Lame’s elastic constants, and the
inhomogeneous term f{r,t) in the right hand side is the
external source term., The displacement vector can be ex-
pressed in terms of the scalar potential & and the vector
potential ¥;
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Using this relation, the equation of motion yields two
uncoupied wave equations for the longitudinal wave and
transverse wave:
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where the sound velocity for the longitudinal wave is ¢ =
(2£2)1/2 and the sound velocity for the transverse wave
is cp = (4)1/2.

In cylindrical coordinates with the origin of z axis at
the center of plate, (2) and {3} become
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The general solutions of (4) and (5) are given by
® = (Acosaz + Bsin 2)Jp(kr), 6)
Uy = (Ccosaz + DsinBz)Jolkr). (M

Using (6}, (7), and (1), the components of the displace-
ment vector apart from the time dependent term e~ 't
are given by

u, = ((Acosaz + Bsinaz)

+ B(C sin Bz — D cos Bz))kJy(kr), (8)
u, = (~a{Asinaz — Beosaz)
+ K3(C cos Bz + D sin B2))Jo(kr) ©)
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where 4, B, C, and D are constants determined by the
initial conditions and Jy is the zeroth Bessel function.
The propagation constants k, a, and 8 heve relations

=k -k B =k -k (10)

If B=C =0, u,(2) = —u,(—z). This indicates the
symmetric mode of the Lamb wave which has the dis-
placement components

uy, = (Acosaz — BD cos Bz)kJgy(kr), (11}

u, = (—adsinaz + k? + Dsin 8z)Jo kr). (12)

If A=D =0, u,(z) = u,(—2z). This indicates the asym-

metric mode of the Lamb wave which has the displace-
ment components

u, = (Bsinaz + BC sin fz)kJj(kr), (13)

u, = (aB cosaz + k*C cos Bz) Jo(kr). {14)

Since the components of the stress tenso:- are expressed
by
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the symmetric mode and the asymmetric mode give dis-
persion equations when the boundary conditions g,, =0
and o, =0 at the boundaries z = %A arz applied:

(k% — 8°)? cosahsin fh + dafk’ sinahces fh = 0, (17)
(k* — %) sin ahcos fh + 4afk® cosahsia fh = 0. (18)
If & = 0, the dispersion relations are simplified by

cos achsin fh = 0, (19)
sinahcos fh = 0. (20)

The symmetric mode thus satisfies the foliowing condi-
tions:
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The asymmetric mode similarly satisfies the following
conditions:

ah = %’j =x, 2,47 - -,
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The above conditions provide cut-off frequencies for sym-
metric modes

fc ﬁ _23 'LT&'“)
Ccg 2¢; 3¢,
o e, e — 2
fC d! d ? d (3)
and cut-off frequencies for asymmetric modes
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with the plate thickness d = 2h.

There are thus two types of Lamb waves, symmetric
and asymmetric modes, which are the mixed waves of
the longitudinal and transverse waves. Symmetric modes
are called Sy, 5, S2-- and asymmetric modes are called
Ao, Ay, A2

III. MODE CONVERSION IN MULTI-LAYER
STRUCTURE

There are three types of mode conversion in Lamb
waves: longitudinal mode and transverse mode conver-
sion in a certain mode, symmetric mode and asymmetric
mode conversion in a Lamb wave type, and lower mode
and higher mode conversion in a mode family. The third
type mode conversion can be more specified by the same
fd mode conversion and the different. fd mode conversion.
The same fd mode conversion implies the mode conver-
sion with the same fd value and the different mode con-
version implies the mode conversion with the different fd
value. The mode conversion can be taken place by one
of three types and can be done by the mixing of these
types. There is small chance in the first and second types
of mode conversion as expected normally. In this paper,
therefore, the third type of mode conversion is concen-
trated on since the spectrum chages of the fundamental
frequency and the second harmonic frequency seems to
be more relevant to it.

A. Normal Modes

Normal modes in a multi-layer structured material are
studied. Normal modes in the 2 direction are clagsified
with the fundamental, second harmonic, third harmonic
frequency, etc. in frequency domain regardless of longi-
tudinal and transverse waves. As shown in the above,
there are two types of normal modes in Lamb waves, one
type of which is for the longitudinal mode and the other
type of which is for the transverse mode.

If the pressure release conditions at the boundary,
g:; = 0 and o,, = 0, is satisfied, the normal mode
waves are produced. The air-layer defect also satisfies the
pressure release boundary conditions if the defect is not



negligible. Symmetric normal modes are given by (21)
and asymmetric normal modes are given by (22). When
symmetric modes are considered, the lowest wave length
is d/2 and the corresponding fundamental frequency is
f1 = 2u/d with the sound velocity v. When asymmetric
modes are considered, the lowest wave length is d and the
corresponding fundamental frequency is f; = v/d. The
second harmonic frequency is f2 = 2f; and the third har-
monic frequency is f3 = 3f1. The symmetric S¢ mode is
faster in velocity and lower in amplitude than the asym-
metric Ao mode is in the low fd region, with the fre-
quency f and the thickness d. The symmetric Sp mode is
the transverse wave and the agsymmetric A9 mode is the
longitudinal wave in the low fd value.

B. Spectrum Levels in Multi-layer Structure

In nondestructive nonlinear acoustic evaluation, the
spectrum level changes of the fundamental and second
harmonic frequency are observed due to the defect. A
possible reason for the spectrum change in multi-layer
structure is the mode conversion among normal modes.

Frequency response for two glass plate specimen with
the water-layer gap is shown in Figure 1 a}. Frequency
regponse for two glass plate specimen with the air-layer
gap is shown in Figure 1 b). In the case of the two glasses
with the water-layer gap, the spectrum level of the fun-
damental frequency is high and the spectrum level of the
second harmonic frequency is relatively low. However,
in the case of the two glasses with the air-layer gap, the
spectrum level of the fundamental frequency decreases
and the spectrum level of the second harmonic frequency
increases, Similarly, three glass plate with air gaps in in-
terfaces increases the gecond and third harmonic spectra
and decreases the fundamental spectra compared with
three glass plate with no air gaps in interfaces.

These phenomena are explained by the mode conver-
sion process. Some part of the fundamental spectrum
level is converted to the second harmonic spectrum level
in the case with the air-layer gap. The fundamental fre-
Juency in two glass plate does not exist in one glass plate
and the first harmonic frequency in two glass plate be-
comes the fundamental frequency in the one glass plate.
The reason for the spectrum level increase in the second
warmonic frequency and the spectrum level decrease in
she fundamental frequency is thus that normal modes of
she fundamental frequency in two plate with the water-
ayer gap are converted to normal modes of the second
1armonic frequency in two plate with the air-layer gap.
n the presence of the air-layer gap, the fundamental fre-
juency in the half thickness plate becomes the second
1armonic frequency in the twice thickness plate.

Similarly, the spectrum level increase in the third har-
nonic frequency and the spectrum level decrease in the

fundamental frequency is that normal modes of the fun-
damental frequency in the three plate specimen with the
water-layer gap are converted to normal modes of the
third harmonic frequency in the three plate specimen
with the air-layer gap.

In the mode conversion, the boundary condition im-
posed by the defect, which is represented by the air-layer
gap, plays the essential role. Two types of pressure nor-
mal mode conversion for multiple frequencies are shown
in Figure 2. The first group is the easy type in the nor-
mal mode conversion, where normal modes satisfy the
boundary conditions imposed by the air-layer gap in the
interface. The family mode conversion between modes
with the fundamental and second harmonic frequencies
is possible. The second group is the difficult type in the
normal mode conversion where normal modes do not sat-
isfy the boundary conditions imposed by the air-layer gap
to maintain the same family mode. Since the condition
of the family mode conversion is not maintained, for ex-
amptle, the symmetric mode with the fundamental fre-
quency changes to the asymmetric mode with the second
harmonic frequency.

C. Clues for Mode Conversion

There are several clues for the normal mode conversion
in multi-layer structure. A few examples, which can be
easily confirmed by measurement, are described.

Mode conversion can take place more in asymmetric
mode family than in symmetric mode family. The Ay
mode easily produces the second harmonic in the pres-
ence of the air-layer gap than the S mode does in the
low fd region: the Ag mode, which satisfies the boundary
condition at the half thickness, is the transverse mode
but the S mode, which does not satisfy the boundary
condition at the half thickness, is the longitudinal mode.

In two glass system, the increase of the second har-
monic level is manifest and in three glass system, the
increase of the third harmonic level is distinct due to the
same fd mode conversion, in which the same fd value is
maintained during the mode conversion. In three glass
system, the increase of the second harmonic level takes
place due to the different fd mode conversion, in which
the fd value is changed.

The spectrum level of the fundamental frequency de-
creases and the spectrum level of the second harmonic
increases for the Ay mode, which is dominated by the
transverse wave, in the presence of the air-layer gap. The
gpectrum level ratio of the second harmonic frequency to
the fundamental frequency decreases as the fd value in-
creases in the low fd region.

Phase and group velocity changes are expected in the
family mode conversion such as the mode conversion from
the Ay mode to the A; mode since each mode has differ-
ent gound velocity.
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VI. CONCLUSIONS

Nondestructive nonlinear acoustic method as
supplementary acoustic evaluation method can be
used to detect and locate defects in addition to
nondestructive linear acoustic mettod. The second
and higher harmonic modes of incident waves are
easily generated from a defect.

In this paper, nondestructive ncnlinear acoustic
method in two dimensions is used to detect defects

in a composite layer-structured material. Spectrum
level changes in fundamental and harmonic
frequencies are observed in the presence of a layer
type defect compared with in the absence of such a
defect. It is proposed in this study that such
spectrum changes in a layer-structired material are
due to mode conversion.

The reason for the spectrum level increase in the
harmonic frequency and the spectrum level decrease
in the fundamental frequency is that normal modes
of the fundamental frequency in th2 plate with the
water-layer gap are converted to normal modes of
the harmonic frequency in the plate with the
air-layer gap. In the presence of ‘he air gap, the
fundamental frequency in a thinne- plate becomes
the harmonic frequency in a thicker plate whaose
thickness is the integer multiple of the thinner plate
thickness. The mode conversion can take place more
in asymmetric mode family than in symmetric mode
family due to the boundary condition imposed by
the layer-type defect.
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Fig. 1.
a) with the water-layer interface b) with the air-layer

Frequency response for two glass plates:
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Fig. 2. Pressure mode conversion with multiple
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frequencies of Lamb waves: a) easy mode conversion
b) difficult mode conversion.
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