• Title/Summary/Keyword: frequency and mode

Search Result 4,222, Processing Time 0.036 seconds

Design of Dual Mode Amplifying Block Using Frequency Doubler (주파수 체배기를 이용한 이중 모우드 증폭부 설계)

  • Kang, Sung-Min;Choi, Jae-Hong;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.127-132
    • /
    • 2006
  • This paper presents a dual-mode amplifier which operates as amplifier or frequency multiplier according to the input frequency. It satisfies the 802.11a/b/g frequency band of wireless LAN standard. A conventional dual-band wireless LAN transmitter consists of the separating power amplifiers operating at each frequency band, but the proposed dual-mode amplifier operates as an amplifier for the 802.11b/g signal and as a frequency multiplier for the 802.11a signal according to each LAN bias condition. The amplifier mode shows the gain of 13dB, the PldB of 17dBm and second harmonic suppression of below -37dBc. And the frequency-doubler mode shows the gain of 3.3dB, the output power of 7.3dBm and third harmonic suppression of below -50dBr.

Dual Frequency Switchable Flexoelectric Cholesteric Devices

  • Chien, Liang-Chy;Shi, Lei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.105-108
    • /
    • 2005
  • We demonstrate an electro-optical device based on the flexoelectric effect of a short-pitched cholesteric liquid crystal. By using a dual-frequency switchable nematic, a small amount of chiral dopant and a small amount of phase-separated polymer localized on the surface, we were able to create a device that operates in amplitude (flexoelectric) and phase(dielectric) modes. At high frequency the dual frequency liquid crystal suppresses the phase mode at higher voltage, which improves the switching speed, and thereby preserving the in-plane-switching mode.

  • PDF

The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향)

  • 윤한익;손인수;진종태;김현수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.

Investigation on Forced Vibration Behavior of Composite Main Wing Structure of A Small Scale WIG Craft Excited by Engine and Propeller (엔진 및 프로펠러에 의해 가진되는 소형 위그선 복합재 주날개의 진동 거동 해석)

  • Kong, Chang-Duck;Yoon, Jae-Huy;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1028-1035
    • /
    • 2007
  • this study, forced vibration analysis was performed on the composite main wing structure of a small scale WIG craft which is equipped two-stroke pusher type reciprocating engine. The structural vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs.

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

Frequency Control of Battery Energy Storage System with a Deadband and Restoration Control in Microgrid (마이크로그리드에서의 데드 밴드와 회복 제어를 적용한 배터리 에너지저장시스템 주파수 제어)

  • Lee, Hak-Ju;Choi, Jin-Young;Choi, Jong-Chan;Won, Dong-Jun;Chae, Woo-Kyu;Park, Jung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1584-1589
    • /
    • 2012
  • The grid-interconnected microgrid can be able to operate with and without the utility microgrid to supply electricity. when the microgrid operates in grid-connected mode, the frequency of the microgrid synchronizes with the system frequency. In this case, the frequency of the microgrid has small variation which is able to change the output of distributed generation with a droop controller. Thus, the small variation of frequency can make the distributed generation generate unnecessary electricity consistently. In this paper, we propose a frequency droop control with a dead band so as to prevent the distributed generations from generating unnecessary output while in grid-interconnected mode. In addition, a distributed generation can have a restoration control to restore the frequency changed by a droop control as a rated frequency. Also, we state the problem of restoration control with a dead band, and propose its solution when the microgrid operates in stand alone mode. We simulate the proposed droop control using PSCAD/EMTDC to verify the validity of the control.

A Novel Scheme for Sliding-Mode Control of DC-DC Converters with a Constant Frequency Based on the Averaging Model

  • He, Yiwen;Xu, Weisheng;Cheng, Yan
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • A new scheme for sliding-mode control (SMC) of DC-DC converters with a constant switching frequency is proposed. The scheme is based on the averaging model and the output signal of the controller is $d^+$ or $d^-$ instead of the on or off signal of a direct sliding-mode (SM) controller or the continuous signal d = $u_{eq}$ of an indirect SM controller. Two approaches using the new scheme are also proposed and the design procedures for a buck converter are given in detail. The first approach called constant $d^+$ and $d^-$ SMC is simple, cost effective and dynamically fast. In order to improve the dynamic characteristics of the reaching phase and to alleviate chattering, the second approach called reaching law SMC is also presented. Analyses and simulation results demonstrate the feasibility of the proposed scheme.

Improvement of Gain and Frequency Characteristics of the CMOS Low-voltage Current-mode Integrator (CMOS 저전압 전류모드 적분기의 이득 및 주파수 특성 개선)

  • Ryu, In-Ho;Song, Je-Ho;Bang, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3614-3621
    • /
    • 2009
  • In this paper, A CMOS low-voltage current mode integrator is designed. The designed current-mode integrator is based on linear cascode circuit that is newly proposed in this paper. When it is compared with gain(43.7dB) and unity gain frequency(15.2MHz) of the typical current-mirror type current-mode integrator, the proposed linear cascode current-mode integrator achieves high current gain(47.8dB) and unity gain frequency(27.8MHz). And a 5th Chebyshev current-mode filter with 7.03MHz cutoff frequency is designed. The designed all circuits are simulated by HSPICE using 1.8V-$0.18{\mu}m$ CMOS technology.

A study on the vibration analysis of automobile steering system and improvement of ride comfort (승용차 스티어링 칼럼 시스템의 진동해석과 승차감 개선에 관한 연구)

  • 김찬묵;임홍재;김도연;임승만;이외순;조항원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.336-342
    • /
    • 1997
  • In this paper, in order to analyze dynamic characteristics of automobile steering system consisting of many components, natural frequencies and transfer functions of each component and total system are found on FFT by experiments. Then, the data are transmitted to commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of rubber coupling in column and telescoping effects on system are considered. C.A.E commercial program are used to compare with the results of experiments. For finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring elements. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency while the column mode is main mode at higher . The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

The Natural Frequency of a Coaxial Cylindrical Shell with Fluid Coupling (유체 연성이 작용하는 동축 원통형 쉘의 고유진동)

  • 안병준;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.975-979
    • /
    • 1994
  • The experimental and finite element studies of a coaxial cylindrical shell filled with liquid in the annular gap were performed to understand its vibration characteristics. Finite element analysis was achieved by using ANSYS code. Form the investigation of the changing trend of natural frequencies for the change of annular gap we know that the natural frequency of the coaxial cylindrical shell varies according to the mode shape. that is, in case of in-phase mode the natural frequency decrease as annular gap increase, but in case of out-of-phase mode the natural frequency increase. Finite element analysis results show the excellent agreement with the experimental results both in air and in water case, so that analysis on other cases with be possible without experiment.

  • PDF