• Title/Summary/Keyword: free-vibration

Search Result 2,140, Processing Time 0.025 seconds

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

Variability of Mid-plane Symmetric Functionally Graded Material Beams in Free Vibration (중립면 대칭 기능경사재료 보의 자유진동 변화도)

  • Nguyen, Van Thuan;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.127-132
    • /
    • 2018
  • In this paper, a scheme for the evaluation of variability in the eigen-modes of functionally graded material(FGM) beams is proposed within the framework of perturbation-based stochastic analysis. As a random parameter, the spatially varying elastic modulus of FGM along the axial direction at the mid-surface of the beam is chosen, and the thru-thickness variation of the elastic modulus is assumed to follow the original form of exponential variation. In deriving the formulation, the first order Taylor expansion on the eigen-modes is employed. As an example, a simply supported FGM beam having symmetric elastic modulus with respect to the mid-surface is chosen. Monte Carlo analysis is also performed to check if the proposed scheme gives reasonable outcomes. From the analyses it is found that the two schemes give almost identical results of the mean and standard deviation of eigen-modes. With the propose scheme, the standard deviation shape of respective eigen-modes can be evaluated easily. The deviated mode shape is found to have one more zero-slope points than the mother modes shapes, irrespective of order of modes. The amount of deviation from the mean is found to have larger values for the higher modes than the lower modes.

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

Effect of Density and Mixing Ratio of Mandarin Peels on The Bending Performance of Sawdust-Mandarin Peels Particleboards (톱밥-귤박 파티클보드의 역학적 성능에 미치는 밀도와 귤박첨가율의 영향)

  • Jin, Taiquan;Kang, Chun-Won;Oh, Seung-Won;Hwang, Jung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.364-373
    • /
    • 2015
  • This study was carried out to estimate the effects of density and mixing ratio of mandarin peels on the bending performances of the sawdust-mandarin peels particle boards. The board density influenced significantly to the bending performance of boards. Dynamic modulus of elasticity (dMOE) and static modulus of elasticity (sMOE) and modulus of rupture (MOR) of particle boards decreased with an increase in the mixing ratio of mandarin peels at the board densities of $0.4g/cm^3$ and $0.5g/cm^3$. High correlations were found between the dMOE and sMOE, and dMOE and MOR of particle boards prepared. Therefore, it was concluded that the dMOE obtained by free vibration test using resonance frequency could be used for predicting the sMOE and MOR of sawdust-mandarin peels particle boards.

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

Biological Monitoring of Workers Exposed to Diisocyanates using Urinary Diamines (소변 중 디아민을 이용한 디이소시아네이트 노출 근로자의 생물학적 모니터링)

  • Lee, Jong Seong;Kim, Boowook;Shin, Jungah;Baek, JinEe;Shin, Jae Hoon;Kim, Ji-hye
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.178-187
    • /
    • 2016
  • Objectives: Diisocyanates are a potent inducer of diseases of the airways, especially asthma. In this study, toluenediamine(TDA) and methylenedianiline(MDA) in urine were evaluated as biomarkers of exposure to tolunenediisocyanate(TDI) and methylenediphenyl diisocyanate(MDI), respectively. Methods: Workers exposed to TDI and MDI, as well as non-occupationally exposed subjects, were studied and pre- and post-shift urine samples were collected from 8 control subjects and 8 workers from a factory which manufactures polyurethane products for reducing noise and vibration in automobiles. Airborne TDI and MDI(n=8) were sampled on solvent-free glass filters impregnated with n-butylamine and detected by liquid chromatography atmospheric pressure ionization tandem mass spectrometry. Urinary TDA and MDA were detected as pentafluoropropionic acid anhydride(PFPA) derivatives by liquid chromatography electrospray ionization tandem mass spectrometry. Results: The median levels of urinary 2,6-TDA(p<0.001), 2,4-TDA(p=0.001), and MDA(p<0.001) of workers in post-shift samples were significantly higher than those of controls. The median levels of urinary 2,6-0TDA($0.63{\mu}g/g$ creatinine vs $0.34{\mu}g/g$ creatinine, p=0.017) and MDA($4.21{\mu}g/g$ creatinine vs $3.18{\mu}g/g$ creatinine, p=0.017) of workers in post-shift samples were significantly higher than those of the pre-shift samples. There were significant correlations between the urinary 2,6-TDA, 2,4-TDA, and MDA of workers in post-shift samples and the airborne 2,6-TDI(rho=0.952, p<0.001), 2,4-TDI(rho=0.833, p=0.001), and MDI(rho=0.952, p<0.001). Conclusions: These urinary diamines, metabolites of diisocyanates, in post-shift samples were useful biomarkers to assess occupational exposure to diisocyanates.

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

On the Free Vibration Analysis of Thin-Walled Box Beams having Variable Cross-Sections (단면형상이 변하는 박판보의 진동해석에 관한 연구)

  • Lee, Gi-Jun;Sa, Jin-Yong;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • In this paper, a local deformation effect in thin-walled box beams is investigated via a finite element modal analysis. The analysis is carried out for single-cell and multi-cell box beam configurations. The single-cell box beam with and without a neck, which mimics a simple wind-turbine blade, is analyzed first. The results obtained by shell elements are compared to those of one-dimensional(1D) beam elements. It is observed that the wall thickness plays a crucial role in the natural frequencies of the beam. The 1D beam analysis deviates from the shell analysis when the wall thickness is either thin or thick. The shell modes(local deformations) are dominant as it becomes thin, whereas the shear deformation effects are significant as it does thick. The analysis is extended to the single-cell box beam with a neck, in which the shell modes are confined to near the neck. Finally the multi-cell box beam with a taper, which is quite similar to real wind-turbine blade configuration, is considered to investigate the local deformation effect. The results reveal that the 1D beam analysis cannot match with the shell analysis due to the local deformation, especially for the lagwise frequencies. There are approximately 5~7% errors even if the number of segments is increased.