• 제목/요약/키워드: free-surface boundary condition

검색결과 192건 처리시간 0.022초

ANALYTIC EXPRESSION OF HYDRAULIC FALL IN THE FREE SURFACE FLOW OF A TWO-LAYER FLUID OVER A BUMP

  • Park, Jeong-Whan;Hong, Bum-Il;Ha, Sung-Nam
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.479-490
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio $\rho$ yields a condition $1 + h\rho = (2-h)((1-h)^2 + 4\rho h)^{1/2}$. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV (FKdV) equation fails.

  • PDF

3차원 자유표면파 문제에서의 국소유한요소법의 응용 (An Application of the Localized Finite Element Method to 3-dimensional Free Surface Wave Problems)

  • 배광준;김세은
    • 대한조선학회지
    • /
    • 제24권3호
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper, the localized finite element method(LFEM) is applied to 3-dimensional ship motion problems in water of infinite depth. The LFEM used here is based on the functional constructed by Bai & Yeung(1974). To test the present numerical scheme, a few vertical axisymmetric bodies are treated by general 3-dimensional formulation. The computed results of hydrodynamic coefficients for a few vertical spheroids and vertical circular cylinders show good agreement with results obtained by others. The advantages of the present numerical method compared with the method of integral equation are as follows; (i) The cumbersome existence of irregular frequencies in the method of conventional integral equation is removed. (ii) The final matrix is banded and symmetric and the computation of the matrix elements is comparatively easier, whereas the size of the matrix in the present scheme is much larger. (iii) In the future research, it is possible to accommodate with the nonlinear exact free surface boundary condition in the localized finite element subdomain, whereas the linear solution is assumed in the truncated(far field) subdomain.

  • PDF

방해물에 기인한 이층유체의 자유 계면에서의 변화 - Hydraulic Fall (Free surface flow of a Two-Layer fluid over a bump - Hydraulic Fall)

  • 최정환
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.129-137
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio ρ yields a condition 1+hρ=(2-h)((1-h)²+4ρh)/sup 1/2/. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV(FKdV) equaition fails.

  • PDF

전동기 냉각팬의 유량예측을 위한 수치해석 (A Numerical Analysis for Prediction of Flow Rate of the Motor Cooling Fan)

  • 이상환;강태인;안철오;서인수;이창준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.670-677
    • /
    • 2005
  • In this study, we analyzed the three dimensional unsteady flow field around the motor cooling fan using the unsteady lifting surface theory. We obtained the flow rate for various geometries of fan from the calculated results of velocity field. For the data of design parameter and rotating speed(rpm) of the fan, we can predict the flow rate of the motor cooling fan with thin thickness through numerical analysis without the experimental data of the free stream velocity which is a boundary condition of flow field. the numerical results showed the flow rate within 10% of error in comparison with experimental results. The radial fans, which are often used as internal motor fan were also investigated with the same procedure.

  • PDF

횡파 중 수중함 단면에 대한 운동 특성 (Motion Characteristics for Submarine Sections m Beam Sea)

  • 이호영;곽영기
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.78-82
    • /
    • 2005
  • The motion response results of a submerged submarine section in waves are presented. The numerical method is based on Cauchy's integral and 3 degrees-of-freedom motions of submarine sections are calculated in two dimensions, in regular waves. The fully nonlinear free surface and body boundary conditions are applied to the present problem, and the viscous effects on the submarine are modeled by Morison's formulas. The motions of submarine sections in beam sea are directly simulated and the effects of wave frequency, snorkel depth, and bridge are discussed.

A new way to design and construct a laminar box for studying structure-foundation-soil interaction

  • Qin, X.;Cheung, W.M.;Chouw, N.
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.521-532
    • /
    • 2019
  • This paper describes the construction of a laminar box for simulating the earthquake response of soil and structures. The confinement of soil in the transverse direction does not rely on the laminar frame but is instead achieved by two acrylic glass walls. These walls allow the behaviour of soil during an earthquake to be directly observed in future study. The laminar box was used to study the response of soil with structure-footing-soil interaction (SFSI). A single degree-of-freedom (SDOF) structure and a rigid structure, both free standing on the soil, were utilised. The total mass and footing size of the SDOF and rigid structures were the same. The results show that SFSI considering the SDOF structure can affect the soil surface movements and acceleration of the soil at different depths. The acceleration developed at the footing of the SDOF structure is also different from the surface acceleration of free-field soil.

유한차분법을 이용한 3차원 지진파 전파 모의 (Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method)

  • 강태섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

이미지 방법을 이용한 자유 및 강체 표면 옆의 맥동하는 버블 주위 속도 포텐셜 해석 (Analysis of Velocity Potential around Pulsating Bubble near Free or Rigid Surfaces Based on Image Method)

  • 이상륜;최걸기;김종철;유승화
    • 한국해양공학회지
    • /
    • 제32권1호
    • /
    • pp.28-35
    • /
    • 2018
  • An analytical method for predicting the velocity potential around a pulsating bubble close to a free or rigid wall was established using an image method. Because the velocity potential should satisfy two boundary conditions at the bubble surface and rigid wall, we investigated the velocity in the normal direction at the two boundaries by adding the image bubbles. The potential was analyzed by decomposing the bubble motion as two independent motions, pulsation and translation, and we found that when the number of image bubbles was greater than ten, the two boundary conditions were satisfied for the translation term. By adding many image bubbles after the approximation of the pulsation term, we also confirmed that the boundary condition at the wall was satisfied.

Fourier 급수전걔를 이용한 부분적으로 유체가 채워진 원통형 셸의 고유진동 해석 (Fourier Series Expansion Method for Free Vibration Analysis of a Partially Liquid-Filled Circular Cylindrical Shell)

  • 정경훈;이성철
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.163-175
    • /
    • 1994
  • An analytical method for nautral frequencies of a partially liquid- filled circular cylindrical shell with various boundary conditions is developed by means of the Stokes's transformation and Fourier series expansion on the basis of Sanders' shell equation. The liquid-shell coupled system is divided into two regions for convenient formulation. One is the empty shell region in which the Sanders' shell equations are formulated without the lipuid effect, the other is wetted shell region in which the shell equations are formulated with consideration of the liquid dynamic effect. The shell equations for each regions are combined by the geometry and the force continuities at the junction of the two regions. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in axial direction. The unknown parameters are selected to satisfy the boundary condition along the wetted shell surface. The natural frequencies of the liquid filled cylindraical shells with the clamped- free and the clamped-clamped boundary conditions examined in the previous works, are obtained by this analytical method. The results are compared with the previous works, and excllent agreement is found for the natural frequencies of the shells.

  • PDF

평면벽면분류의 유입경계조건을 가지는 개수로 유동에 관한 수치적 연구 (A Numerical Study on the Open Channel Flow with Plane Wall Jet Inlet Boundary Condition)

  • 설광원;이상룡
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.287-298
    • /
    • 1989
  • 본 수치적 해석에서는 H$_{w}$/H$_{g}$의 비가 5.0~16.7의 범위에서 수행된 실험결과를 바탕으로 기존의 k-.epsilon. 난류모델을 사용하여, 고려하고자 하는 변수, 즉 유입유속, 입구 게이트의 높이, 수위, 배플의 유.무등에 따라서 액체의 유동형태가 어떻게 변하는가를 살펴 보고자 한다.다.