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Free surface flow of a Two-Layer fluid over a bump - Hydraulic Fall
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Abstract

We consider long nonlinear waves in the two-layer flow of an inviscid and
incompressible fluid bounded above by a free surface and below by a rigid
boundary. The flow is forced by a bump on the bottom. The derivation of the

forced KdV equation fails when the density ratio % and the depth ratioc o

yields a condition

1+ ho=(2— B)((1— k)2 +4oh) 7.

To overcome this

difficulty we derive a forced modified KdV equation by a refined asymptotic
method. Numerical solutions are given and hydraulic fall solution of a two
layer fluid is expressed analytically in the case that derivation of the forced

KdV(FKdV) equaition fails.

1 Introduction

We consider the waves between two im-
miscible, inviscid, and incompressible
fluids of different but constant densities
in the presence of small bump at the
rigid bottom when the effect of gravity
is considered (Fig. 1). We assume that
the upper boundary is a free surface
and the two dimensional bump is mov-
ing along the lower rigid boundary at
a constant speed. By choosing a coor-
dinate system moving with the object,
the fluid motion becomes steady. Two
critical speeds are obtained, near either

one of which an FKdV for steady flow
can be derived and has been studied ex-
tensively in [1] and [2]. Forbes [3],[4]
studied steady flow of a two layer fluid
over a bump numerically and found
a hydraulic fall. Shen([5] used FKdV
theory to find analytic expression of
hydraulic fall of one layer fluid. An
asymptotic approach for the case of a
rigid upper boundary was developed
without surface tension by Shen [6] on
the basis of FKdV theory, and with sur-
face tension by Choi, Sun, and Shen [7)].
The case of free upper boundary was
studied with surface tension by Choi,
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Sun, Shen [8] asymptotically on the ba-
sis of EKdV theory. In the case con-
sidered here, when the wave speed is
near the smaller critical speed for in-
ternal wave, the nonlinear term in the
FKdV may vanish and the derivation of
FKdV fails. To overcome this difficulty,
a refined asymtotic method is used to
derive the Steady Modified KdV equa-
tion with forcing term (SFMKdV) in
the following form:

(A?]; + B)”h‘ + 0772sz + Dbz = 0,

where A to D are constants depend-
ing on several parameters and b(z) is
a function with compact support due
to the bump on the rigid lower bound-
ary. We investigate solutions of the
SFMKdV, which represent possible in-
terfacial wave forms. By using this
equation, we find the analytic expres-
sion of Forbes’s hydraulic fall in the
case that derivation of FKdV equation
fails.

z=H" 4 {x") T T~ T—

Q" -00 <x"<o0 ,p" <p™
Z=nax) T N N
Q" -o0<x'<o0,p*”

I N

z' = -H"+b"(x")

Fig. 1 Fiuid Domain

2 Derivation
of Steady Modified
KdV equation with
Forcing

We cousider steady internal waves be-
tween two fluids. We assume that the
two fluids are inviscid, incompressile
and immiscible and have constant but
different dinsities. The fluid domain is
bounded above by a free surface and
below by a horizontal rigid boundary
with a bump. The domains of the up-
per fluid with constant density p** and
the lower fluid with constant density
p*~ are denoted by Q** and Q*~ re-
spectively (Fig. 1). Assume that the
small bump is moving with constant
velocity C. In reference to a coordi-
nate system moving with the bump, the
flow is steady and moving with velocity
C far upstream. Then the governing
equations and boundary conditions are
given by the Euler equations as follows:

In Q%

u*:!:u;:‘l‘: + w*:{:u::'t — __p;:.t/p*:l:
*t  xt O T ;% .
U W T W W = -0 —g;
at the free surface, 2* = H** + o}
+ + —
U —wm =0

pt =0,

)
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at the interface, 2* = 73

pr—p=0
UENG,. — W = 0;
at the rigid bottom, z* = —H*™ +
b*(z*)

*— * *—
w —bL.ut =0,

where (u**, w**) are horizontal and

vertical velocities, p** are pressures,
p** are densities of upper and lower flu-
ids, and g is the gravitational accelera-
tion constant. We define the following

nondimensional variables:

e = H/L<<1,
m = 6_177; H*~1
ne = € g3 H*,

!

pt = p*/gH"p*,
(z,2) (ex*,2*)/H*™,
(u,w) (gH* ) VP (u*, e "),

Il

il

p = Pt <1,
U = C/(gH* )",
h = H*Y/H*,
b(z) = b(z)(H ),
where L is the horizontal scale,

H is the vertical scale, b(z) =
b*(z)(H*€)!, H** and —H*" are
the equilibrium depth of the upper and
lower fluids at z* = —oo respectively,
and z* = —H*~ + b*(z) is the equation

for the bump. Then, in terms of them,
the above equations become in Q%

uf 4w =0 (1)

vtuf +wtul = —pE/pt  (2)

Cutwi+fwtut = —pf/pt—1(3)
at z=h + eny,

pt =0, (4)

eutnyy — wt = 0;

at z = ensy,
€Uy —w =0 (6)
eutnyg —wt =0 (7)
pt—p =0 (8)

at z=—1,
w” = Sub,, (9)

where p* = p < p7,p” = 1 and b(z)
has a compact support.

Next, we use a unified asymptotic
method to derive the equations of 7;(x)
and 7o(z). We assume that velocity
terms u, v and pressure term p have the
following asymptotic expansions:

(u7w’p) = (u07 wO,PO) + E(ulawlapl)
+62(u2aw2, Pz) + - (10)
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By inserting (10) into nondimension-
alized Euler equations and arranging
the resulting equations according to the
power of €, one can easily see that
(10,0, —p%z + ph) are the solutions of
the zeroth order system of equations
and solve the first to third order sys-
tem of differential equations[8]. It fol-
lows that uf, w¥ p¥,i=1,2,3, are all
fuctions of 9;(z) and 72(z) and the fol-
lowing equations of 7; and 5, are ob-

tained.

At z = h,
UoThae — wfr
+e(ui me — mwy, — w3 )
+62(u;—771x + MmNy, — wlzzﬂf
—mwy, —w3y) =0,

and at z =0,
UgN2z — Wy
+e(ug M2z — nawy, — wy)
+€2(u2—772z + MaT2zty, — wfzzﬂg
—now,, —w; ) = 0.

Then we use these equations to find
the equations of the free surface 7;(z)
and the interface n2(z). By substi-
tuting uo,uik,wf,u.f,wf,w? into the
above equations of n; and 75,, we can
find the two relations between 7; and

72 and by solving 7, for 5, we obtain

(uo — per/uo — (1 — p)/uo)m2z +

C(En2772z) + 62(F177§772z + F2"721:
+F3r]21::c:z: + F4b1:) = 0) (11)

where, letting A = uf(—o0),
771(—00) =0 1]2(—00) = 0 A= (2u0 -

(1=p))/(p+ui~h), B = uo/(p+ud—h),
and C =pA+1—p,

—C?%ugy® - 2Cug!

—pB(— 20 C?uj? 4+ 2A%
+hA ug? — 24)/uj,
—p(C?/2 - 3C3u3%/2 — C*
+A3/2 + 3R A3uz? /2 — A?)2
—A* + A®) [up

~3Bp(us" + Cug”)
B(=Ap—(1-p))/2
—C?u3? /2 + A%)2 + hA%u /2
—A+ A2/2)[ug — 3C%u;3/2
—3C%uz®/2,

(1+ Cug®)(A = pBug?)
—ApBuz'(2 - A+

Cug? — hAuz?),

—pBug ' (—A(ph?[2 + p/3)
—(ugph + (1 - p)/3)
+A(ph*/3)/ p + uih?/2) [uo
—A(ph*[2 + p/3)u5?
~(ugph + (1 - p)/3)ug ",
pB — uo,

E =

F1=

Fy=

From the zeroth order term of the
equation (11), the critical speeds can be
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derived so that near them one has to de-
velop a nonlinear theory for the motion
of the interface and free surface of the
given domain. uo—pA/uo—(1—p)/ue =
0 implies ug — (1 + A)ud + h(1 —p) =0,
and ud = 1+h+((1—h)?+4ph)'/2. Next
we consider the coefficients of 57, term
in the first order terms of the equation
(11). If E is not zero, the same result
as in [1] and [5] can be carried out. In
this article, Since we consider two layer
fluid, we have the case that F vanishes
ful=1+h—((1-h)?+4ph)"/? and
14+hp = (2—h)((1—h)2+4ph)!/2. With
the conditions, we come up with the fol-
lowing time-independent modified KdV
equation with forcing (SFMKdV),

F177§772a: + F2’72x

+F3772:m:x + F4b:l: = 0. (12)

where
Fy = 3up(4p +3h —ud),
Fo = M2(1+hyud ~4h(1 — p))ug?,
F = ud'(h(1+4)/3
—uj(h? + 1+ 3ph)/3),
Fy = ug(h—1ud).

Since the sign of F3F determines the
existence of solutions of (12) and only
bounded solutions appeares without oc-
curence of hydraulic fall solutions when

F3F, > 0 [7], we assume F3F; < 0 in
the following.

3 Hydraulic falls

We assume U = ug + Ae? By dividing
both sides of (12) by F3, we have

Nozzz = Aln;"hz + A2772z + ASb-T (13)

where

A =-F/F>0,
AZ = _F2/F3,
A3 = —F4/F3.

If no(x) is a solution of (13) and tends
to 0 at £ = —oo with 7y.(—00) = 0,
then, from b(—o0) = 0, 5, satisfies

Naze = A3 /3 + Agng + Asb(z){14)
2(—00) =0, n2(—00) =0,

We choose 7, = 0 in (—o0,z7) and
prove the existence of the solution of
(14) on [z7,z*], where [z7,z%] is the
compact support of &(z). For that pur-
pose, we define a complete metric space
M and a closed ball B, in M so that

M = {n; [ m2 € C([z7,2*]), |n2|l =
MaXe-czcot [12(2)[} By = {m € M |
lln2]l £ r < oo}. Then, by using con-
traction mapping theorem, the follow-
ing theorem is proved [7].
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Theorem 1 When § > ¢ > 0, ny(z) = 611/2 sin ¢,

3 where
N2zz — A2772 - A17I2/3 = A3b(.'l!),
e <z <zt |Ir| <M,
N2(27) = M2a(z7) = 0 (A:60/6)'*(z — <*)

¢
_ L2 gy=1/2

has a solution in C*(R) if — A, is suf- - ¢0(1 k" sin 8)~/d0),
ficiently large. o = sin‘l(afflﬁ),
2

Next we analyze the solutions of (14) and k°*=¢§ /6 < 1.
ahead of bump. When b(z) = 0, we 1/2
consider an initial value problem for When §o > 0> &, m(z) = &'  cos ¢,
(14) with initial value ny(zt) = aq, where
n2z(z%) = B. Then by integrating it
from z* to z > z*, . 6 N
(m(2))? = (A41/6)ma(2) + Aan(e)r +d Az =) = [ (1- K sing) s,

where d = 8% — (A;/6)a* — Aya?.(15) 7= (Ai(bo — £1)/6)"?,
do = cos™ (a5 ),
I a = f =0, then (15) has the trivial and k2 = £&/(¢— &) < 1.

solution 5(z) = 0. If A2 —2A4,d/3 >0,

If a and B are not zeros and

A} — 2A,d/3 = 0, then (15) has

(41/6)  ma()* + Aanz(e)* +4d a solution 7my(z) = F(—3A2/A;)/?
= (A1/6)(n; — &)z — &) tanh(—Apz/2). I A2 < 2A4,d/3,

N2(2) = £(d1 + (A1/6)(n3(z) +c1)*)/?

where for some d; > 0 and the solution is un-
bounded.
b = —3A,/A, Having shown the existence of a solu-

tion of (14) from z~ to z* and analyz-
+3(A3 — 24:d/3)'?/ A, ing the solutions ahead and behind the

&L = —3A3/A; bump, we now find the global solution
—3(A2 — 2A,d/3)/?/ 4. of (14), numerically using Runge-Kutta

Method. The numerical results are

Hence, the solutions of (15) in this given in Fig. 2 to 6. Fig. 2 shows typi-
case are the following periodic wave so- cal hydraulic fall solution profile of (14)
lutions. and we give solution curve of hydraulic
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falls in Fig. 3. In both numerical re-
sults, we assume z~ = —1,z* =1, and
b(z) = Rv1 — z%for |[z| £ 1 and b(z) =
0 elsewhere. As ) being increased
from —oo, symmetric wave-free solu-
tions are embedded in periodic wave so-
lutions for discrete values of A for which
n2(z) = nee(zt) = 0. In Fig. 4 and
5, we present typical symmetric wave-
free solution and Fig. 6 gives the solu-
tion profile of symmetric wave solutions
with one hump. As A being increased
and converging to a value, above which
solution diverges, the period of the pe-
riodic solution becomes larger and hy-
draulic fall solution appears at the lim-
iting value of A as A2—2A,d/3 becomes
zero. Hence we have found the analytic
expression of hydraulic fall solution
n(z) = (—3As/A;)"? tanh(—Ay(z ~
zo)/2), where z¢ is a phase shift. We
note that in the case of 1 + hp # (2 —
h)((1 — k)? + 4ph)*/? FKdV theory can
be used to find the expression of hy-
draulic fall and same result as in [5] can
be carried out.

mir) o, —

N " " z
-1 ts - 0.8 o LY d 1s 2 X3

Fig. 2. Hydraulic fall solution, & =05, R = 1,4 = -1.13911

os

Unboundcd Solutions

Periodic Wave Solutions

Fig. 3. Solution curve of hydrautic (all, h = 0.5

mlz)
s

‘L

3 -2 -t ° ' H )

Fig. 4. Symmetric wave solution with one hump

=05 R=1%= 2733907

noo\r

) 2 1 ° 1 2

Fig. 5. Symmetric wave solution with two humps

A=05R=1A= -9.06601
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Periodic Wave Solutions

Periodic Wave Solutions

s 1 [ 2 2.5 L]

Fig. 6. Solution curve of Symmetric wave solutions

with one bhump, b = 0.5

4 Conclusion

We consider the physical problem of
steady state flow past a positive, sym-
metric body at the horizontal bottom
of a two-layer fluid. The derivation
of Forced K-dV equation fails when
14+ hp = (2= Rh)((1 = h)* + 4ph)'/?,
and the Forced Modified KdV equa-
tion is derived by a unified asymptotic
analysis. Two parameters, A and R,
appear in the equation and can affect
its solution behavior. A is a deviation
of the flow speed at the flow speed at
far upstream from the critical speed u,
and R is the hight of the bump. We
study mathematically different types of
period-free solutions which may appear
in different regions of the A and R.
This investigation may help us under-
stand the flow pattern under parameter
change in a two-layer fluid with bump
at the rigid boundary. In particular,
we have found the analytic expression

of the hydraulic fall which was found
numerically by Forbes (3].
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