• Title/Summary/Keyword: free volume

Search Result 1,444, Processing Time 0.029 seconds

Study on the Shape of Free Surface Waves by the Scheme of Volume Fraction (Volume Fraction 기법에 의한 자유표면파 형상 연구)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1215-1220
    • /
    • 2008
  • To obtain the shape of the free surface more accurately, computations are carried out by a finite volume method using unstructured meshes and an interface capturing method. Free-surface flow, which is very important in the fields of ship and marine engineering, is numerically simulated for flows of both water and air. Control volumes are used with an arbitrary number of faces and allows a local mesh refinement. The integration is of second order, with a midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation. The solution method of pressure-correction type solves sequentially equations of momentum, continuity, conservation, and two-equations turbulence model. Comparison are quantitatively made between the computation and experiment in order to confirm the solution method.

Diffusion Coefficients of Polyimide/N-Methyl-2-Pyrrolidone Systems below Glass Transition Temperature (유리전이온도이하에서의 Polyimide/N-Methyl-2-Pyrrolidone계의 확산계수)

  • 박광승;김덕준
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.194-200
    • /
    • 2000
  • The diffusion coefficients in polyimide/N-methyl-2-pyrrolidone (NMP) systems were proposed using tile Vrentas-Duda's hole free volume theory. Several free volume parameters included in the diffusion coefficients were obtained from the fundamental physical properties of polyimide and NMP and group contribution theory, and the pre-exponential diffusion coefficient, D$_{0}$ was also determined from the dynamic swelling behavior of polyimide in NMP solution. The experimental swelling behavior of polyimide films in NMP was well described by the theoretical one using the proposed diffusion coefficient.t.

  • PDF

Free Vibrations of Tapered Circular Arches with Constant Volume (일정체적 변단면 원호형 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min;Choi, Jong-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • This paper deals with free vibrations of the tapered circular arches with constant volume, whose cross sectional shape is the solid regular polygon. Volumes of the objective arches are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such arches are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various arch parameters such as rise ratio, section ratio, side number, volume ratio and taper type are reported in tables and figures.

Free Vibrations of Circular Curved Beams with Constant Volume (일정체적 원호형 곡선보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Choi, Jong-Min;Park, Chang-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2011
  • This paper deals with free vibrations of the circular curved beams with constant volume, whose cross sectional shapes are the circular solid cross-sections. Volumes of the objective beam are always held in constant regardless shape functions of the cross-sectional radius. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such beam are derived and solved numerically for determining the natural frequencies. In numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, relationships between frequency parameters and various beam parameters such as rise ratio, section ratio, elasticity ratio, volume ratio, slenderness ratio and taper type are reported in tables and figures.

A New Equation of State for Polymeric Liquids (고분자 액체에 대한 새로운 상태방정식)

  • Jung, Hae Young
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.587-591
    • /
    • 2000
  • Many theories have been suggested to obtain an equation of state for polymeric liquids. Most of them are based on the concepts of cell, hole, free volume or lattice etc. One of the most succesful theories is an equation of state theory of Flory and his coworkers based on the concept of free volume. In this work, van der Waals potential used in Flory's theory was modified, giving a new equation of state for polymeric liquids. The calculated results showed that the new equation of state gave better agreement with experimental PVT data than Flory's theory.

  • PDF

MOMENT-OF-FLUID METHOD FOR FREE SURFACE FLOW SIMULATION USING UNSTRUCTURED MESHES (비정렬 격자상에서 Moment-of-Fluid 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.65-67
    • /
    • 2011
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. The MOF method uses moment data, namely the material volume fraction, as well as the centroid, for a more accurate representation of the material configuration, interfaces and concomitant volume advection. In this paper, unstructured mesh extension of the MOF method is to be presented. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two materials. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Development of a Solver for 3-D Flows with Free Surface using the Finite Volume Method on Unstructured Grids (비정렬 격자 유한체적법을 이용한 삼차원 자유표면 유동 해석 코드의 개발)

  • Yim, Joong-Hyuck;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.910-915
    • /
    • 2003
  • A Navier-Stokes equation solver for incompressible viscous flows with free surface is developed and tested. This is based upon a fractional time step method and a non-staggered finite volume formulation for unstructured meshes. For time advancement scheme, Adams -Bashforth method for convective term and Crank-Nicolson method for diffusive term are applied. The interface between two fluids with different fluid properties is tracked with Piecewise Linear Interface Calculation(PLIC) Volume-of-Fluid(VOF) methods. Computational results are presented for some test problems: the broken dam, the sloshing in a rectangular tank, the filling of a cylindrical tank.

  • PDF

Visualization of Air Absorption Induced by Free Surface Vortex in the Pump Sump Using Multi-phase Flow Simulation (펌프 섬프장내 자유표면 보텍스에 의한 공기흡입 현상의 가시화)

  • Park, Young-Kyu;Li, Kui. Ming.;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • In this study the change of free surface vortex is expressed through the time volume fraction using multiphase unsteady condition in sump, because in previous studies of the pump sump did not represent the behavior of the free surface vortex exactly due to the reason it was calculated using single phase and steady condition. The reliability of the computational analysis is verified through comparing experimental results with that of present numerical analysis. Homogeneous free surface model is used to apply interactions of air and water. The results show that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5%. The vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. The behavior of free surface vortex at numerical analysis is quite similar to experimental test. The result of vortex motion according to time, works on a cycle.

Effect of the Droplet Volume on the Evaporative Characteristics of Sessile Droplet (액적 체적이 증발 특성에 미치는 영향에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Kim, Hong Seok;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to investigate the influence of the droplet volume on the evaporation characteristics of the sessile droplet. In particular, the effect of the free convection in the vapor domain on the evaporation rate was analyzed through the numerical simulation. The commercial code of the ANSYS Fluent (V.2020 R2) was used to simulate the heat transfer in the liquid-vapor domain. Moreover, we used the diffusion model to estimate the evaporation rate for the different droplet volume under the room temperature. It was found that the evaporation rate significantly increases with the droplet volume because of the larger surface area for the mass transfer. Also, the effect of free convection on the evaporation rate becomes significant with an increment of droplet volume owing to the increase in the droplet radius corresponding to the characteristic length of the free convection.

A Study on the Change of Free Surface Vortex according to Intake Conditions in the Pump Sump (펌프 섬프장 흡입 조건에 따른 자유표면 보텍스 변동에 관한 연구)

  • Park, Young-Kyu;Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.74-79
    • /
    • 2011
  • In this study the change of free surface vortex is represented at different times according to height of water and with or without curtain wall installation. The air volume fraction is investigated at each condition of water level and the influence about creation of vortex is analyzed. The height of sump intake is taken as 100mm and the water level is divided into 5 steps. The sump model is the TSJ model and the curtain wall is applied by HI standard of America. The results shows that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5% and the vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. In the higher water level, less air is absorbed into the intake pipe. After curtain wall installation, the suction rate of the air volume fraction is decreased by 6.7%. The result of the vortex motion according to time, works on a cycle.