• 제목/요약/키워드: free vibration characteristic

검색결과 88건 처리시간 0.022초

초음파 진동선삭에서의 절삭 및 진동특성에 관한 연구 (A Study on the Cutting and Vibration Characteristic of Ultrasonic Vibration Cutting)

  • 이규배;임영호;이계철
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.147-154
    • /
    • 1994
  • In this study, ultransonic vibration cutting system was contructed by installing throw-away-tool tip (KT 350) by screw lock on the bending vibration mode in free-free beam. During the conventional cutting and ultransonic conventional cutting of SM45C, variations of cutting force, roughness and acceleration were measured. The results were compared and analyzed in detail, and it was found that the ultransonic vibration cutting was more effective in reducing cutting force compareed with the conventional cutting .

  • PDF

끝 단에 스프링-질량계가 연결된 엘리베이터 로프의 진동 (Vibration of Elevator Rope with a Spring-mass System at the Tip)

  • 곽문규;한상보
    • 한국소음진동공학회논문집
    • /
    • 제24권4호
    • /
    • pp.317-323
    • /
    • 2014
  • This study is concerned with the free vibration analysis of an inextensible uniform rope with a spring-mass system at the tip. The rope is hanged vertically in a gravitational field. This problem is related to the free vibration of an elevator rope connected to an elevator cage. The equation of motion and the corresponding boundary conditions are derived by using the Hamilton's principle. The general solution of the governing equation of motion is expressed in terms of Bessel functions. The characteristic equation was derived by applying the boundary conditions. The characteristic values which are in fact non-dimensionalized natural frequencies were obtained numerically. The effects of mass and spring constant were investigated. The numerical results show how the tip mass and spring affect the natural frequencies of the rope.

비틀림 변환기용 압전 원판의 진동 해석 (Vibration Analysis of a Piezoelectric Disc for a Torsional Transducer)

  • 이정현;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.911-914
    • /
    • 2005
  • The vibrational characteristics of the piezoelectric disc for a torsional vibration transducer is theoretically studied in this paper. The characteristic equation of the piezoelectric annular disc has been derived from Newton's End law and Gibb's free energy equations. With an anisotropic material property of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results were compared with the values obtained by finite element analysis and experiments

  • PDF

An asymptotic analysis on non-linear free vibration of squarely-reticulated circular plates

  • Nie, G.H.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.547-560
    • /
    • 1999
  • In this paper an asymptotic iteration method is adopted to analyze non-linear free vibration of reticulated circular plates composed of beam members placed in two orthogonal directions. For the resulting linear ordinary differential equations in the process of iteration, the power series with rapid convergence has been applied to obtain an analytical solution for non-linear characteristic relation between the amplitude and frequency of the structure. Numerical examples are given, and the phenomena indicating hardening of such structures have been presented for the (immovable or movable) simply-supported and clamped circular plates.

Dynamic Characteristic Identification on Steel Column bases Installed in Pendulum-type Earthquake Response Observatory

  • Choi, Jae-Hyouk;Ohi, Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2225-2235
    • /
    • 2004
  • An observatory termed 'Steel Swing' has been developed, where a 15000 kg pendulum is hanged from a stiff steel frame. A building element can be tested after inserted between the pendulum and the frame. Free vibration, forced vibration tests and earthquake monitoring were performed on an exposed-type steel column base. The response records monitored during natural earthquakes were used to identify the vibration property of the specimen. Identified system gain was approximated by a theoretical gain of linear SDOF system, and the response calculated based on such a linear system agrees with the monitored response fairly well. This research technique can be applied to check the behaviors of new materials and new details of connections and the safety of non-structural elements as well.

Timoshenko 보함수 성질을 갖는 다항식을 이용한 보강판의 교유진동 해석 (Free Vibration Analysis of Stiffened Plates Using Polynomials Having the Property of Timoshenko Beam Functions)

  • 김병희;김진형;조대승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.623-628
    • /
    • 2004
  • In this study, the assumed-mode method using characteristic polynomials of Timoshenko beam is applied for the free vibration analysis of rectangular stiffened plates. The polynomial is derived considering the rotational constraint along the boundary edges of plate and the orthogonal relation of Timoshenko beam functions, which enables to simplify the free vibration analysis of plate structure having various boundary conditions. To verify the validity and effectiveness of the adopted method, numerical analysis for cross-stiffened plates were carried out and its results were compared with those obtained by the general purpose FEA software.

  • PDF

정규모우드를 활용한 비선형 대칭구조물의 강제진동해석 (On the Forced Vibration in the Nonlinear Symmetric Structure by Using the Normal Modes)

  • 박철희;최성철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.21-28
    • /
    • 1994
  • The forced vibration with the symmetric boundary condition in nonlinear structure is studied by utilizing the characteristic of the free vibration which have two modes with the similar natural frequency. Two linear modes exist to have no concern with the amplitude. It is found that the normal mode or elliptic orbit as the newly coupled modes is generated in accordance with changing the stability. It is also known that responses for forced vibration having the small external force and damping are near mode of free vibration and the stability for each response is determined according to the stability for each response is determined according to the stability in mode of free vibration. Finally the stability and bifurcation are analyzed in proportion to increment of external force and damping.

  • PDF

곡률과 회전을 고려한 유공 강판의 자유진동해석 (Free Vibration Analysis of Perforated Steel Plates with Various Cutout Curvatures and Rotations)

  • 우진호;나원배
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.61-70
    • /
    • 2010
  • This study presents free vibration analyses of perforates steel plates with various cutouts. Four different parameters (shape, size, curvature radius ratio, and rotation of cutouts) were considered to investigate the effects of those parameters on the free vibration characteristics, such as natural frequencies of the perforated steel plates. Three different shapes of cutouts are circle, square, and triangle, and the considered sizes are 5, 10, 15, 20, and 25 mm. For the triangular and square cutouts, the characteristic radii of the inscribed circles of those cutouts were defined. In addition, the curvature radius ratio was defined as the ratio of curvature radius of bluntness and the characteristic radius. Then, total seven different curvature radius ratios (0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) were considered. To investigate the rotation effect of the cutouts, it was considered four rotations ($0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$) for the square cutouts and three rotations (0, 15, and 30) for the triangular cutouts. All the free vibration analyses were conducted using a general purpose finite element program. From the analyses we found that the most influential parameter for the free vibration response of the perforated plates is the size of cutout. The other factors such as the shape, curvature radius ratio, and rotation are minors; they mainly change the natural frequency as long as the size effect is accompanied.

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

Free vibration analysis of rectangular plate with arbitrary edge constraints using characteristic orthogonal polynomials in assumed mode method

  • Kim, Kook-Hyun;Kim, Byung-Hee;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.267-280
    • /
    • 2012
  • An approximate method based on an assumed mode method has been presented for the free vibration analysis of a rectangular plate with arbitrary edge constraints. In the presented method, natural frequencies and their mode shapes of the plate are calculated by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. Characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies edge constraints corresponding to those of the objective plate are used. In order to examine the accuracy of the proposed method, numerical examples of the rectangular plates with various thicknesses and edge constraints have been presented. The results have shown good agreement with those of other methods such as an analytic solution, an approximate solution, and a finite element analysis.