• 제목/요약/키워드: free surface condition

검색결과 488건 처리시간 0.026초

쇄파의 초기단계 생성조건과 수치시뮬레이션 (Appearing Condition of Breaking Waves at Infant Stage and Numerical Simulation)

  • 곽승현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.873-879
    • /
    • 2009
  • The steady breakers at an infant stage are investigated through the numerical simulation. The appearing condition and characteristics of the sub-breaking waves are reviewed by analysing bow waves. The instability analysis is possibly done through the relationship between the free-surface curvature and circumferential force, which is obtained from the momentum equations. Navier-Stokes equations are solved by a finite difference method where the body-fitted coordinate system, the wall function and the advanced mesh system are invoked. The numerical result shows that the gradient of M/$U_s$ is greatly influenced by the Froude number and the decrease of M/$U_s$ indicates that the flows are unstable. Additionally flows with plunging or spilling are simulated successfully, but the application of breakers to the severely broken wave still remains to be settled in the future.

Numerical Simulation of Unsteady Inviscid Waves by Spectral Method

  • Lee, Jin-Ho;Chun, Ho-Hwan
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.140-145
    • /
    • 2000
  • The spectral method which is composed of an eigenfunction expansion of free modes in the wave number domain is used to produce two dimensional unsteady inviscid wave simulation such as progressive waves in a numerical pneumatic wave tank. A spatial and time dependent free surface elevation and the potential are calculated by integrating ODE derived from fully nonlinear kinematic and dynamic free surface boundary condition at each time step. The nonlinear characteristics in the waves by this method were notable as increasing wave steepness. This method is very useful and powerful in terms of saving computational time caused by rapid convergence exponentially with increasing number of nodes, even preserving accurate numerical results. Moreover, it will given us many possibilities to apply to naval and ocean engineering fields.

  • PDF

레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구 (A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module)

  • 박영덕
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

PIV를 이용한 회류수조의 유속 분포 교정에 관한 연구 (Calibration of Water Velocity Profile in Circular Water Channel Using Particle Image Velocimetry)

  • 서성부;정광효
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.23-27
    • /
    • 2011
  • This experimental study was performed to find rpms of the impeller and the surface flow accelerator to make a uniform velocity vertical distribution in the circular water channel. PIV technique was employed to measure the water velocity profiles into the water depth from the free surface. The number of instantaneous velocity profiles was decomposed into mean and turbulence velocity components, and the distribution of velocity fluctuation and turbulence intensity were computed for each experimental condition. From these results, the velocity uniformity was quantitatively determined to present the flow quality in the measuring section of the circular water channel. It has been shown that the proper operation of the surface flow accelerator would make the uniform velocity profiles and reduce the velocity fluctuation near the free surface.

2차원 자유표면파 문제에서의 국소 유한요소법의 응용 (An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems)

  • 길현권;배광준
    • 대한조선학회지
    • /
    • 제22권3호
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정 (Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling)

  • 류시형;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

무산소동의 초정밀 절삭 특성을 이용한 아노드 및 캐비티의 가공 (Machining of Anode and Cavity applying Ultraprecision Machining Characteristics of OXFC)

  • 원종호;김주환;박순섭;김건희;김상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.922-925
    • /
    • 2002
  • Klystron which is micro wave amplifier tube are mainly used in fields of science such as accelerator, nuclear fusion, broadcasting, communication fields, and defense industry fields, tract. The quality of Klystron anode and cavity are determined by form accuracy and roughness of the worked surface. Therefore anode and cavity are restricted the from accuracy strictly and the surface roughness be under Rmax 0.03S. As a work material of anode and cavity, the oxygen-free copper, that is used for optical pares of aerospace and laser mirror is selected. An outside diameter of material is $\Phi$100 mm and an inside diameter is $\Phi$30~33 mm. In this study, to find the optimum ultra precision cuffing condition of oxygen-free copper with diamond turning machine, the surface roughness is examined for various diamond toot nose radius, main spindle speed, fred rate and depth of cut. As a result of experiment, we could machined the anode and cavity with a surface roughness within Ra 3.2 nm, a form accuracy within 0.01 $\mu\textrm{m}$.

  • PDF

복합지지형 고속선의 조파저항 계산 (Calculation of Wave Resistance of a Hybrid Hydrofoil)

  • 유재훈;김영기;류재문
    • 대한조선학회논문집
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 1996
  • 3차원 날개면이 부착된 복합지지형 고속선의 정상상태에서의 조파저항을 포텐셜 기저 판요소법으로 해석하였다. 계산에 사용된 고속선은 물 속에 잠겨있는 몸체와 몸체의 중간 및 후방에 붙어 있는 3차원 날개면과 수면을 관통하는 앞, 뒤의 스트럿트로 구성되었다. 물체 표면(몸체, 날개면 및 스트럿트)에는 쏘오스와 다이폴을, 자유표면에는 쏘오스를 분포하였고, 선형화된 자유표면 조건과 방사조건을 만족시키기 위해 4점 유한차분을 이용하였으며, 날개면의 유동해석을 위해 준압력 Kutta조건(semi-linear pressure Kutta condition)을 적용하였다. 패널사이의 틈새 문제를 개선하기 위해 비 평면성이 고려된 쌍곡면 판요소법을 적용하여 각 선체 표면에서의 수치 계산 정도를 높이고자 하였다. 수치 계산 결과는 회류수조에서 모형 시험을 수행한 결과와 비교하였으며, 이로부터 본 연구에서 개발된 수치 계산법은 고속선의 최적 선형 개발에 이용 가능한 도구가 될 수 있는 것으로 나타났다.

  • PDF

자유수면하에서 이동하는 2차원 수중익 주위의 비선형 유동특성 (Nonlinear Flow Characteristics of Two-Dimensional Hydrofoils moving below the Free surface)

  • 박일룡;전호환
    • 대한조선학회논문집
    • /
    • 제35권2호
    • /
    • pp.8-19
    • /
    • 1998
  • 본 논문에서는 자유수면하에서 이동하는 2차원 수중익 주위의 비선형 유동문제를 포텐셜 이론을 바탕으로 특이점 분포법을 도입하여 해석한 결과이다. Hess & Smith[12]의 방법에 따라 수중익의 표면에 소오스와 보텍스패널을 분포하고, 비선형해를 구하기 위해서 자유수면 위 일정 거리에 랜킨소오스패널(Rankine Source Panel)을 분포하는 수치기법(Raised Panel Method)을 사용하였다. Neumann-Kelvin 선형해로부터 반복계산법을 통해 비선형 자유수면 조건을 엄밀히 만족하는 비선형해를 구하였다. 수치계산결과에서 비선형해가 Duncan[11]의 실험결과(NACA0012, 입사각$(\alpha)= 5^{\circ}$)와 비교적 잘 일치함을 보였으며 수치계산결과의 타당성을 검증할 수 있었다. 잠수깊이가 얕은 경우와 고속 영역에서도 수렴된 해를 구할 수 있었으며, 고속으로 갈수록 비선형해와 선형해의 차이는 미미함을 볼 수 있었다. 수중익의 두께 및 캠버(camber)등 기본적인 단면변화와 속도변화에 대한 수중익의 유체역학적 특징을 살펴보았다.

  • PDF

터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구 (Heat Transfer and Flow Measurements on the Turbine Blade Surface)

  • 이대희;심재경;박성봉;이재호;윤순현
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.