• Title/Summary/Keyword: free formaldehyde analysis

Search Result 13, Processing Time 0.032 seconds

Safety Studies on the Sanitary Goods for Infant Part2 : Formaldehyde Allergy and the Quantitative Analysis of Infant's Clothing (유아용 의류제품의 인체 안전성에 관한 연구(II) -유리 formaldehyde의 유해성과 함량동향-)

  • 이원자
    • Journal of the Korean Home Economics Association
    • /
    • v.33 no.3
    • /
    • pp.255-264
    • /
    • 1995
  • This study was the designed to measure skin irritation caused by clothing at free foraldehde have caused a substantial number of cases of dermatitis type. Free formaldehyde levels were observed in infant's sanitatized goods9disposable diapers, cotton-diapers and under wear etc.) at 1992, 1994. The amount of free formaldehyde was measured by means of Acetyle Acetone method(KS K 0611). As the resort, underwear generally gave the highest free formaldehyde level, but disposable diapers and cotton diapers showed the lowest level. The formaldehyde level in intan's clothing lowered in 1994 than 1992, after the enforcement of the level in intant's clothing lowered in 1994 than 1992, after the enforcement of the formaldehyde level control. it was found that 38.7% of infant's sanitatized goods still exceeded th controlled level(A-Ao : 0.05) In the future, research to lower the amount of formaldehyde released form fabrics will also lead to decreased incidence of garment formaldehyde sensitivity. The possibility of a consumer suffering is being in convenienced form a textile-related skin problem will be even lower than it has been in the past.

  • PDF

Curing Characteristics of Low Molar Ratio Urea-Formaldehyde Resins

  • Fan, Dongbin;Li, Jianzhang;Mao, An
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.45-52
    • /
    • 2006
  • Five low molar ratio urea-formaldehyde (LUF) resins were synthesized in this study. The effects of molar ratio, free formaldehyde content, and catalysts on the curing characteristics of LUF resins were studied by measuring its free formaldehyde content, pH value change after catalysts added, curing rate, and pot life, observing its cured appearance, and analyzing its thermal behavior. The results indicate that: 1) The LUF resin with lower molar ratio than 1.0 can still cure; 2) Free formaldehyde content is not the main factor in affecting curing rate of LUF resin; 3) Compared with ammonium chloride as a traditional catalyst, persulfate salts markedly accelerate the curing rate of LUF resin, and result in the different appearance; 4) the addition of sodium chloride to catalysts can accelerate the curing rate of LUF resin, but the effect is moderate.

  • PDF

13C-NMR Spectroscopy of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Lee, Sang M.;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.63-72
    • /
    • 2008
  • As a part of abating formaldehyde emission of urea-formaldehyde (UF) resin adhesive, this study was conducted to investigate chemical structures of UF resin adhesives with different formaldehyde/urea (F/U) mole ratios, using carbon-13 nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. UF resin adhesives were synthesized at four different F/U mole ratios such as 1.6, 1.4, 1.2, and 1.0 for the analysis. The analysis $^{13}C$-NMR spectroscopy showed that UF resin adhesives with higher F/U mole ratios (i.e., 1.6 and 1.4) had two distinctive peaks, indicating the presence of dimethylene ether linkages and methylene glycols, a dissolved form of free formaldehyde. But, these peaks were not detected at the UF resins with lower F/U mole ratios (i.e., 1.2 and 1.0). These chemical structures present at the UF resins with higher F/U mole ratios indicated that UF resin adhesive with higher F/U mole ratio had a greater contribution to the formaldehyde emission than that of lower F/U mole ratio. Uronic species were detected for all UF resins regardless of F/U mole ratios.

The Study on the Development of Environmental-friendly Surface Material Using Condensed Tannin (축합형 탄닌을 이용한 친환경 건축마감재 개발에 관한 연구)

  • Jo, Jae-Min;Park, Moon-Soo;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • Medium-density fiberboard (MDF) is widely used as an indoor building materials. However, formaldehyde resins, commonly used to bind MDF together, emit formaldehyde and other volatile organic compounds that cause health risk at sufficient concentration. In this study, condensed tannin having formaldehyde absorption ability was used to solve the problem of formaldehyde emission generated from surface material. The synthesis of melamine-formaldehyde resin and reaction of melamine-formaldehyde and condensed tannin were analyzed by FT-IR spectrum. Also surface properties, such as shear force, impact strength, tape adhesion, pencil hardness and gloss retention were measured. Free formaldehyde analysis was performed to analyze remaining unreacted formaldehyde. According to the results, the optimum shear force and impact strength could be obtained by 10 wt.% usage of condensed tannin. In cases of pencil hardness and gloss retention, the optimum properties could be obtained at 20 wt.% of condensed tannin. The amounts of formaldehyde emission of surface material containing 20 wt.% of condensed tannin was 59 ${\mu}g/m^2{\cdot}h$. The amounts of formaldehyde emission could be reduced 3 times by using 20 wt.% of condensed tannin.

Effect of Temperature and Bake-out on Formaldehyde Emission from UF Bonded Wood Composites

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2012
  • This study analysis the effect of various temperatures (20, 35 and $50^{\circ}C$) on the formaldehyde emission from wood composites, which were particleboard (PB), medium density fiberboard (MDF), high density fiberboard (HDF) and laminated HDF (L-HDF) by Japanese desiccator method. Also, to reduce formaldehyde emission by wood composites, it has been suggested that undergo a bake-out conditions. On average, the level of formaldehyde emission increased many times with a $15^{\circ}C$ increase in temperature from 20 to $35^{\circ}C$ for PB, MDF, HDF and L-HDF, respectively. Formaldehyde emissions from wood composites could be expected to increase with increasing ambient temperature. At $35$ for 28 days bake-out treatment of boards, the free formaldehyde emission reduced 67.8% (PB), 40.1% (MDF), 37.8% (HDF), and 35.2% (L-HDF). On the other hand, after the bake-out at $50^{\circ}C$ for 28 days, the formaldehyde concentration decreased by 88.2, 66.9, 62.2 and 59.3% of the concentration before the bake-out for PB, MDF, HDF and L-HDF, respectively. An interesting of the bake-out treatment at $50^{\circ}C$ after 14 days, formaldehyde emission grade of PB & MDF down $E_2$ to $E_1$, and HDF & L-HDF down $E_1$ to $E_0$.

Formaldehyde-Free Durable Flame-Retardant Finish of Cotton Fabrics Using Vinyl Bisphosphonic Acid and Acrylamide (비닐이포스폰산과 아크릴아미드를 이용한 면직물의 포름알데히드-프리 내구성 방염가공)

  • Jang, Mi-Ji;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The durable FR treatments such Pyrovatex and Proban have been used for cotton fibers, while the finishes involve toxic ammonia or formaldehyde release during finishing process or finished products. In this study, ecofriendly flame-retardant treatment of cotton fabrics was carried out using UV-curable formulations of Vinyl bisphosphonic acid (VBPA), Acrylaminide and Triacryloylhexahydro-1,3,5-triazine, as a monomer, a comonomer and a cross-linking agent respectively, which can introduce a cross-linked copolymer networks. With an optimal finish formulation, the flame retardancy of LOI 29.8 was maintained even after 10 laundering cycles. In TGA analysis, the DTGA peak decreased from 389℃ to 252℃ and the amount of char yield increased from 6.1% to 46.1% compared to the untreated cotton. In addition, MCC analysis showed that Peak HR and THR decreased by 59.4% and 69.2% respectively, compared to the untreated cotton. The pyrolysis and combustion behaviors of the FR-treated cotton implied a condensed-phase flame-retarding mechanism.

The Study of the Printability on the Phenol Free Heat-Set Web Inks(II) - Analysis by the trial printing test - (Phenol Free Heat-Set 윤전 잉크의 인쇄적성에 관한 연구(제2보) - 실 인쇄 실험에 의한 분석 -)

  • Ha, Young-Baeck;Oh, Sung-Sang;Lee, Won-Jae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Materials used for the inks in the printing industry is an important material following the paper. The composition of the ink is pigment and organic solvents. However, Ink is used in a variety of chemicals, they are classified as non-green. Therefore, rosin-modified phenolics manufactured by the reaction of phenol and formaldehyde can take the place of eco-phenol free resin and by experiment density, gloss, trapping, contrast and dot gain of printing has been studied as printability. The result of study can support that the properties of printing using eco-phenol free resin such as density, gloss, contrast and trapping is similar to existing ink. In the part of dot gain, the result is excellent. So we were thought to be able to improve some characteristics such as dispersion of black ink, that will be possible for the field applicability.

Characteristics of VOCs Oxidation using Copper Phthalocyanine Catalysts (구리 프탈로시아닌 촉매의 VOCs 산화 특성)

  • 서성규;윤형선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • The catalytic oxidation of volatile organic compounds (methanol. acetaldehyde) has been characterized using the copper phthalocyanine catalyst in a fixed bed flow reactor under atmospheric pressure. The catalytic activity for pretreatment conditions was examined by this reaction system. The catalytic activity was ordered as follows: metal free-PC<Cu ($\alpha$)-PC<Cu ($\beta$)-PC The formaldehyde, carbon monoxide as a partial oxidation product of methanol and acetaldehyde over Cu ($\alpha$)-PC catalyst were detected and the conversions of methanol and acetaldehyde were accomplished above 95% over Cu ($\alpha$) -PC, Cu ($\beta$) - PC catalyst at 35$0^{\circ}C$. The pretreated metal free -PC, Cu($\alpha$)-PC, Cu($\beta$)-PC catalysts have been characterised by TGA, EA and XRD analysis. The catalytic activity pretreated with air and $CH_3$OH mixture (P-4) or air only (P-5) was very excellent. XRD and EA results showed that Cu($\alpha$)-PC, Cu($\beta$)-PC were destroyed an(1 new metal oxide such as CuO were formed.

A Time series Analysis on the Performance Items of the "Housing Performance Grading Indication System" (주택성능등급표시제도 성능항목의 특성 및 시계열분석( I ))

  • Lee, Sung-Ok;Kim, Soo-Am;Shin, Sung-Eun
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.11a
    • /
    • pp.213-216
    • /
    • 2009
  • The purpose of this study is analyzing temporal flow about 20 detailed performance items in the "Housing Performance Grading Indication System". This study try to figure out situations according grade in detailed performance item and to analyze change item about 112 cases(2 cases in 2006, 15 cases in 2007, 46 cases in 2008, 49 cases in 2009), from January 9, 2006 which system is undertaken, to October, 2009. This system consists of 5 main performance section, 14 performance categories and 20 detailed performance items. 5 main performance parts are Noise and Acoustics(Light-weight impact sound control, heavy-weight impact sound control, sound control of toilet, sound control of party wall), Long-life(flexibility, remodeling & maintenance, durability), Landscape & Indoor Environment(landscape, formaldehyde control & ventilation, daylighting, thermal environment), Welfare & Barrier-free(playground and community center, welfare space, barrier-free design), Fire Safety(fire safety, safe place, fire-resisting quality). Total efficiency about housing can understand systematically of 20 perfomance items though this research.

  • PDF

Flame Retardancy of Cellulose Fabrics Treated with 3-(Hydroxyphenyl Phosphinyl) Propanoic Acid

  • Zhang, Lianping;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • 3-(Hydroxyphenyl phosphinyl) propanoic acid (HPPA) has been one of the most commonly used durable flame retardant agents for polyethylene terephthalate (PET) for many years. We intended to explore the application of HPPA to cellulose fabrics as formaldehyde-free phosphorus based flame retardants (FRs) through green chemistry process. The flame retardancy of the flame-retardant treated cellulose fabrics were characterized by using inductively coupled plasma spectroscopy (ICP) and limiting oxygen index (LOI). Structural changes of the treated cellulose fabrics were carried out by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. To enhance the flame retardancy of HPPA treated cellulose fibers, glycerol polyglycidyl ether (GPE), a crosslinking agent was employed. Both HPPA and GPE treated cotton fabric imparted an LOI value over 26.