DOI QR코드

DOI QR Code

Flame Retardancy of Cellulose Fabrics Treated with 3-(Hydroxyphenyl Phosphinyl) Propanoic Acid

  • Zhang, Lianping (School of Textile, Yeungnam University) ;
  • Kim, Sam-Soo (Industrial Materials Research Institute, Kolon Industries, Inc.) ;
  • Lee, Jae-Woong (Industrial Materials Research Institute, Kolon Industries, Inc.)
  • Published : 2008.10.27

Abstract

3-(Hydroxyphenyl phosphinyl) propanoic acid (HPPA) has been one of the most commonly used durable flame retardant agents for polyethylene terephthalate (PET) for many years. We intended to explore the application of HPPA to cellulose fabrics as formaldehyde-free phosphorus based flame retardants (FRs) through green chemistry process. The flame retardancy of the flame-retardant treated cellulose fabrics were characterized by using inductively coupled plasma spectroscopy (ICP) and limiting oxygen index (LOI). Structural changes of the treated cellulose fabrics were carried out by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. To enhance the flame retardancy of HPPA treated cellulose fibers, glycerol polyglycidyl ether (GPE), a crosslinking agent was employed. Both HPPA and GPE treated cotton fabric imparted an LOI value over 26.

Keywords

References

  1. S. V. Levchik and E. D. Weil, A Review of Recent Progress in Phosphorus-based Flame Retardants, J. Fire Sci., 24, 345-364(2006) https://doi.org/10.1177/0734904106068426
  2. C. Q. Yang, X. Wang and I. Kang, Ester Cross-linking of Cotton Fabric by Polymeric Carboxylic Acids and Citric Acid, Textile Research Journal, 67(5), 334-342(1997) https://doi.org/10.1177/004051759706700505
  3. C. Q. Yang, C. Hu and G. C. Lickfield, Cross-liking Cotton with Poly(itaconic acid) and In Situ Polymerization of Itaconic Acid: Fabric Mechanical Strength Retention, J. Appl. Polym. Sci., 87, 2023-2030(2003) https://doi.org/10.1002/app.12043
  4. C. Q. Yang and X. Wang, Infrared Spectroscopy Studies of the Cyclic Anhydride as the Intermediate for the Ester Crosslinking of Cotton Cellulose by Polycarboxylic Acids. II. Comparison of Different Polycarboxylic Acids, J. Polym. Sci., Part A: Polym. Chem., 34, 1573-1580(1996) https://doi.org/10.1002/(SICI)1099-0518(199606)34:8<1573::AID-POLA22>3.0.CO;2-4
  5. C. Q. Yang and X. Wang, Formation of Cyclic Anhydride Intermediates and Esterification of Cotton Cellulose by Multifunctional Carboxylic Acids: An Infrared Spectroscopy Study, Textile Research Journal, 66(9), 595-603(1996) https://doi.org/10.1177/004051759606600908
  6. J. Lee, R. M. Broughton, A. Akdag, S. D. Worley and T. S. Huang, Antimicrobial Fibers Created via Polycarboxylic Acid Durable Press Finishing, Textile Research Journal, 77(8), 604-611(2007) https://doi.org/10.1177/0040517507081832
  7. S. Yang and J. Kim, Flame Retardant Polyesters. I. Phosphorous Flame Retardants, J. Appl. Polym. Sci., 106, 2870-2874(2007) https://doi.org/10.1002/app.26892
  8. S. Yang and J. Kim, Flame Retardant Polyesters. II. Polyester Polymers, J. Appl. Polym. Sci., 106, 1274-1280(2007) https://doi.org/10.1002/app.26544
  9. S. Yang and J. Kim, Flame Retardant Polyesters. III. Fibers, J. Appl. Polym. Sci., 108, 2297-2300 (2007)
  10. G. Joseph, "Fire Retardancy of Polymeric Materials", Marcel Dekker, Inc., New York, pp.148-206, 2000
  11. S. Gaan and G. Sun, Effect of Phosphorus Flame Retardants on Thermo-oxidative Decomposition of Cotton, Polym. Degrad. Stab., 92, 968-974(2007) https://doi.org/10.1016/j.polymdegradstab.2007.03.009
  12. S. Gaan and G. Sun, Effect of Phosphorus and Nitrogen on Flame Retardant Cellulose: A Study of Phosphorus Compounds, J. Anal. Appl. Pyrolysis, 78, 371-377(2007) https://doi.org/10.1016/j.jaap.2006.09.010