• Title/Summary/Keyword: free field analysis

Search Result 709, Processing Time 0.027 seconds

Development of Seismic Monitoring Analysis System for HANARO (하나로 지진감시 분석시스템 개발)

  • 류정수;김형규;윤두병
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.330-337
    • /
    • 2002
  • The HANARO seismic monitoring system is classified as non-nuclear safety(NNS), seismic category I, and quality class T The seismic monitoring system installed at the instrument room consists of five field sensors and one monitoring cabinet. The field sensors are composed of three triaxial accelerometers which installed at base slab, free field and overhead crane support respectively, a seismic trigger and a seismic switch at base slab. The most parts of analog system except field sensors are not produced any more, the improvement of the system is to be needed. The analog system with magnetic tape recorder is not only out-of-date model but dependent upon foreign technology. So it is difficult to get the spare parts and the cost to buy them is increased. Therefore we have improved the analog seismic monitoring system into a new digital seismic monitoring analysis system(SMAS) except five field sensors. After the installation of the new SMAS, we have carried out the site acceptance test(SAT) to confirm the field functions. The results of SAT satisfy the requirements of the fabrication technical specification. This new SMAS is operating at HANARO instrument room to acquire and analyse the signal of earthquake.

  • PDF

The Derivation of Generalized Quasi-Three Dimensional Displacement Field Equations for the Analysis of Composite Laminates (복합재료 적층판의 해석을 위한 일반화 준 3차원 변위식의 도출)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.21-27
    • /
    • 1998
  • In the case of existing in free-edge delaminations of composite laminates which are symmetry with respect to mid-plane in laminates also, in the case of asymmetry and anti-symmetry, the generalized quasi-three dimensional displacement field equations developed from quasi-three dimensional displacement field equations can be applied to solve above cases. We introduce three paramenters in this paper, which have not been used in quasi-three dimensional displacement field equations until now. To the laminate subjected to the axial extension strain $\varepsilon$0(C1) in $\chi$-direction, the bending deformation $\chi$$\chi$(C$_2$) around у-direction, the bending deformation w$\chi$(C$_4$) around z-direction and the twisting deformation $\chi$$\chi$y(C$_3$) around $\chi$-direction .The generalized quasi-three dimensional displacement field equations are able to be analyzed efectively.

Electric Field Uniformity in Reverberation Chamber with 5 GHz Diffuser by Transmission Antenna (송신 안테나에 의한 5 GHz 이차 잔류 디퓨저를 적용한 전자파 잔향실의 내부 필드 균일도 변화)

  • Rhee, Eugene
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.83-86
    • /
    • 2021
  • In this paper, electric fields in electromagnetic reverberation chambers, which are used as a substitute facility for EM-free anechoic chambers, are analyzed. This paper focused on the 4-5 GHz band, which is expected to adversely affect equipment. To analyze the field uniformity inside the electromagnetic reverberation chamber, electric field strengths are sampled and finite-difference time-domain method was used for numerical analysis. Moreover, Quadratic residue diffuser was used to improve the characteristics of the electromagnetic reverberation chamber and the uniformity of the internal field strength. Standard deviation, tolerance characteristics, and partiality characteristics were compared while varying the aiming point of transmission antenna.

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

Identification of isotropic and orthotropic constitutive parameters by FEA-free energy-based inverse characterization method

  • Shang, Shen;Yun, Gun Jin;Kunchum, Shilpa;Carletta, Joan
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.471-494
    • /
    • 2013
  • In this paper, identification of isotropic and orthotropic linear elastic material constitutive parameters has been demonstrated by a FEA-free energy-based inverse analysis method. An important feature of the proposed method is that it requires no finite element (FE) simulation of the tested material. Full-field displacements calculated using digital image correlation (DIC) are used to compute DIC stress fields enforcing the equilibrium condition and DIC strain fields using interpolation functions. Boundary tractions and displacements are implicitly recast into an objective function that measures the energy residual of external work and internal elastic strain energy. The energy conservation principle states that the residual should be zero, and so minimizing this objective function inversely identifies the constitutive parameters. Synthetic data from simulated testing of isotropic materials and orthotropic composite materials under 2D plane stress conditions are used for verification of the proposed method. When identifying the constitutive parameters, it is beneficial to apply loadings in multiple directions, and in ways that create non-uniform stress distributions. The sensitivity of the parameter identification method to noise in both the measured full-field DIC displacements and loadings has been investigated.

Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Yoon, Koo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements (해석적 주파수종속 무한요소를 사용한 시간영역해석의 지반-구조물의 상호작용을 고려한 지진해석)

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.121-128
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far field soil. The dynamic stiffness matrices of the far field region formulated using the present method in frequency domain can be easily transformed into the corresponding matrices in time domain. At first, the equivalent earthquake forces are evaluated along the interface between the near and the far fields from the free-field response analysis carried out in frequency domain, and the results are transformed into the time domain. An efficient procedure is developed for the convolution integrals to evaluate the interaction force along the interface, which depends on the response on the interface at the past time instances as well as the concurrent instance. Then, the dynamic responses are obtained for the equivalent earthquake force and the interaction force using Newmark direct integration technique. Since the response analysis is carried out in time domain, it can be easily extended to the nonlinear analysis. Example analysis has been carried out to verify the present method in a multi-layered half-space.

  • PDF

A Numerical Analysis of Free Surface Wave around a ship (선체주위 자유수면파의 수치해석)

  • Choon-Bum Hong;Seung-Hee Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.80-86
    • /
    • 1994
  • A numerical method for simulations of inviscid incompressible flow fields around a ship advancing on the free surface is developed. A body fitted coordinate system, generated by numerically solving elliptic type partial differential equations is used to conform the ship and free surface configurations. Three dimensional Euler equations transformed to the non-staggered body fitted coordinate system are discretised by finite difference method. Time and spatial derivatives are discretised by forward and centered differencings, respectively, and artificial dissipations are added to discretised convection terms for improvements of numerical stability. At each time steps, free surface elevations are recomputed to satisfy nonlinear free surface conditions. Poisson equations for pressure field are solved iteratively and the velocity field for next time step is extrapolated. To verify the developed numerical method, flow fields around a Wigley model are simulated(Fn=0.250-0.408) and compared with experimental data to show good agreements.

  • PDF

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.