• Title/Summary/Keyword: frame finite element

Search Result 856, Processing Time 0.024 seconds

A study on Optimum Design of the Frame for Mechanical Press (기계식 프레스 Frame의 최적설계에 관한 연구)

  • Jo, Baek-Hui;Ryu, Byeong-Sun
    • 연구논문집
    • /
    • s.22
    • /
    • pp.65-74
    • /
    • 1992
  • This paper aims at calculating optimum design dimensions to minimize the weight satisfied strain and stress intensity of the frame while loading maximum weight into a mechanical press in the static condition. Analysis of the frame was carried out by using the FEM, then the optimum condition was obtained by using these data. As modeling in the finite element analysis has great impact on the reliablity of analysis results, the analyzed object was selected a 150-ton mechanical press of J Company, the part little affected to structural rigidity was simplified, the load condition was considered in the only maximum load, the boundary condition was used by giving symmetric displacement due to symmetric boundary condition, the finite element was applied a linear membrane element. An intermediate processor program applied the normal ANSYS to analyze finite elements was developed, and the design sensitivity was calculated. This program was applied to the optimum design.

  • PDF

A Strength Analysis of the AGV Structure using the Finite Element Method (유한요소법을 이용한 AGV 구조물의 강도해석)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.37-42
    • /
    • 1998
  • The important parts of the developing AGV model are the fabrication of each part and the design technology of body frame. In the present day, design of the body frame depends on the experience of the industrial place. the systematic data need for the optimal design of the frame for the case of model change. In this study, the strength of the early stage AGV(Automatic guided vehicle) is examined with the 3-dimensional finite elemnt method. In order to verify the finite element results, the computed results are compared with the experimental data from the strain-gage output. A New model was designed by rmoving some parts of the early staged(roughyly designed) model and choosing the thickness change of the rectangular-pipes.

  • PDF

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Non-linear Finite Element Analysis and Performance Evaluations of Frames Strengthened by Non-uniform Concrete Brace Facade (비정형 콘크리트 가새 파사드 보강 골조의 비선형 유한요소 해석 및 성능평가)

  • Lee, Sun-Ju;Kim, Hyo-Ju;Cho, Chang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.73-80
    • /
    • 2024
  • Non-uniform reinforced concrete brace facade systems are newly considered to improve seismic performance of reinforced concrete frame buildings under lateral load. For normal and high strength concrete of 30MPa, 80MPa, and 120MPa, the cross-sections of reinforced concrete brace facade systems were designed as different size with same amount of reinforcements. The strengthened frame systems were analyzed by a non-linear two-dimensional finite element technique which was considering material non-linearities of concrete and reinforcing bars under monotonic and cyclic loadings. From the study of non-linear analysis of the systems, therefore, it was provided that the proposed braced facade systems were reliable to improve laterally load-carrying capacity and minimize damages of concrete members through comparisons of load-displacement curves, crack patterns, and stress distributions of reinforcing bars predicted by current non-linear finite element analysis of frame specimens.

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Finite Element Analysis of Carbon Fiber Reinforced Plastic Frame for Multi-legged Subsea Robot (다관절 복합이동 해저로봇을 위한 탄소섬유 복합소재 프레임의 구조 해석)

  • Yoo, Seong-Yeol;Jun, Bong-Huan;Shim, Hyungwon;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.65-72
    • /
    • 2013
  • This paper describes a finite element analysis (FEA) of the body frame of a subsea robot, Crabster200 (CR200). CR200 has six legs for mobility instead of screw type propellers, which distinguishes it from previous underwater robots such as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Another distinguishing characteristic is the body frame, which is made of carbon fiber reinforced plastic (CFRP). This body frame is designed as a rib cage structure in order to disperse the applied external loads and reduce the weight. The frame should be strong enough to support many devices for exploration and operation underwater. For a reasonable FEA, we carried out specimen tests. Using the obtained material properties, we performed a modal analysis and FEA for CR200 with a ready posture. Finally, this paper presents the FEA results for the CFRP body frame and the compares the characteristics of CFRP with conventional material, aluminum.

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

Betterment of The Tractor Frame Design Applying Computation Mechanics Approach

  • Koike, Masayuki
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1212-1221
    • /
    • 1993
  • The shape optimization procedure applying finite element method was carried out for the specific purpose of analysis of a tractor chassis frame. Minimization of the mass as an objective function is executed under multiple constrained conditions of nodal displacements and stresses. The optimization process executions were succeeded in converging into single optimum solution. Although mass reduction and stress alleviation were attained by 40% and 26 to 24% respectively , the geometry of the shape is so complicated for fabrication that the refinement of the geometry is of necessity.

  • PDF

Reliability Analysis of Frame Strctures (뼈대구조의 신뢰성 해석)

  • 이정재;고재군;김한중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A reliability analysis model for the frame structure which grafts the discretized ideal plastic method to the stochastic finite element method is introduced. The proposed method simmulates realistically the sequencial occurrence of plastic hinges and yields the probability of failure directly from the geometrical and material properties of a frame structure. The presented method can also take into account the uncertainties inherent in loads and resisten- ces through the stochastic finite element technique. The analysis results are compared with those of the Monte Carlo Simmulation, the Bound Theory, and the fs-unzipping method, and show good agreement.

  • PDF

Structural Weak Area Analysis of an Electric Car Bogie Frame by Finite Element Analysis (유한요소 해석에 의한 전동차 대차 프레임의 구조 취약부 해석)

  • Goo Byeong-Choon;Whang Won-Joo;Choi Sung-Kyu;Oh Il-Geun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.628-633
    • /
    • 2004
  • we studied the structural weak areas of an electric car bogie frame by finite element analysis. The bogie frame under consideration is a part of the standard electric car with aluminium car body. Vertical, torsional. lateral and longitudinal loadings were applied. Numerical results were compared with the experimental results. The two results are in a good agreement.

  • PDF