• Title/Summary/Keyword: frame compliance

Search Result 46, Processing Time 0.023 seconds

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

Modified Stiffness Matrix of Frame Reflecting the Effect of Local Cracks (국부적 균열의 영향을 고려한 수정된 프레임 강성행렬)

  • 이상호;송정훈;임경훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.353-360
    • /
    • 2002
  • The objective of this study is to develop a technique that analyzes the global behavior of frame structures with local cracks. The technique is based on frame analysis and uses the stiffness matrix of cracked frame element. An algorithm proposed here analyzes a frame structure with local transverseedge cracks, considering the effects of crack length and location. Stress intensity factors are employed to calculate additional local compliance due to the cracks based on linear elastic fracture mechanics theory, and then this local compliance is utilized to derive the stiffness matrix of the cracked frame element. In order to verify the accuracy and reliability of the proposed approach, numerical results are compared with those of Finite Element Method for the cracked frame element, and the effects of single crack on the behavior of truss structure are also examined.

  • PDF

A Position/Force Control of Robotic Manipulators with Parameter Adaptation (파라미터 적응을 이용하는 로보트 매니퓰레이터의 위치/힘 제어)

  • Yu, Dong-Young;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.408-410
    • /
    • 1992
  • An adaptive hybrid position/force controller for constrained manipulator with uncertain dynamic model parameters and environment stiffness is presented. In this paper, the compliance frame model is constructed by independent positions and forces to be controlled. The adaptive controller based on this compliance frame dynamic model is designed. Lyapunov theory is used for controller design and Stability analysis.

  • PDF

Development and its Performance Evaluation of a Depth-Sensing Micro-Indentation Testing Device (깊이 측정이 가능한 마이크로 압입 시험기 개발 및 성능평가)

  • Chung, Chin-Sung;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2009
  • We developed a compact micro indentation testing device (designated SNUT) which is capable to measure Young's modulus of a sample using depth and applied load data during indentation. Performance of this device was evaluated using pure Ti, pure Ni, and die steel (SKD11). As a result of analysing the indentation test data, the frame compliance $C_f$ was found to influence mainly the modulus by 80% among several factors affecting accuracy of Young's modulus. Project area, which was determined by indirect indentation method, was modified using direct SEM observation. Finally, Young's modulus error was reduced to 5% after taking into consideration the frame compliance and modified projected area from 80% error without any these two correction factors. The performance of SNUT and MTS instruments was compared using same specimen (pure Ti).

Global Behavior Analysis of Frame Structures with Local Cracks (국부적 균열을 지닌 프레임 구조체의 전체적인 거동 해석)

  • Kim, Dong-Jo;Kim, Se-Jin;Kim, Hyo-Jin;Lee, Sang-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.67-70
    • /
    • 2008
  • This study is to analyzes the global behavior of frame structures with local cracks in structural members by frame analysis, using the stiffness matrix of cracked frame element. This local compliance is utilized to derive the stiffness matrix of the cracked frame element and the effects of interaction among multiple cracks are also examined. The proposed technique is applied to frame structures with local cracks. Analysis results confirm the possibility of quantitative analysis of a structure damaged with local cracks and the feasibility of the technique as a tool for analyzing the global behavior of frame structures, reflecting effects of local cracks.

  • PDF

Dynamic behavior of a scroll compressor with radial compliance device (반경방향 순응기구를 갖는 스크롤 압축기의 동적 거동)

  • 김현진;김재호;이진갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.33-43
    • /
    • 1998
  • Dynamic behavior of a scroll compressor has been investigated analytically. The equations of motion of moving elements of the scroll compressor such as the orbiting scroll, anti-rotation device, slider bush, and the crank shaft with eccentric crank pin have been set up. As the solutions of these equations, reaction forces between the moving elements, and also between the moving elements and the compressor frame have been calculated. The reaction forces from the moving elements to the frame are the unbalanced forces, which produce accelerations of the compressor body. These accelerations can be used as a measure of the compressor vibration. The major contributions to the unbalanced forces come from the orbiting movement of the orbiting scroll.

  • PDF

A Study on the Structural Analysis and Test of the Bogie Frame According to UIC Code (UIC code에 따른 대차 프레임 구조해석 및 시험에 관한 연구)

  • 최중호;송시엽;천홍정;전형용;박형순
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.884-891
    • /
    • 2002
  • This report is the result performed the structural analysis and the static and fatigue load test of bogie frame for the purpose of designing and verifying the bogie frame which satisfy the load condition required in the UIC code. This investigation is proposed the efficient draft of the design to satisfy the load condition required in the UIC code. And It is performed the structural analysis to evaluate the static strength and the fatigue life of the patient material and the welded part. Also, This is proposed the efficient draft of the test to satisfy the method of the static and fatigue test required in the UC code. And it is carried out the static and the fatigue load test to verify it. We can designed the bogie frame in compliance with UIC 515-4 and 615-4 code.

  • PDF

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

A Study on Elementary Mathematics Teacher's Guide Book according to 2009 Revised Curriculum (2009 개정 교육과정에 따른 초등수학 교사용 지도서 검토 연구)

  • Kim, Sung Joon
    • East Asian mathematical journal
    • /
    • v.32 no.2
    • /
    • pp.153-174
    • /
    • 2016
  • The purpose of this study is to provide an opportunity for better understanding and application of 2009 revised elementary school mathematics textbooks through focus group's investigations on the elementary mathematics teacher's guide books. First, We survey previous studies on the teacher's guide books to make the frame of investigation. Next, We compose focus group(8 teachers) for 3~4th grades, and analyze the teacher's guide books according to ready-made frame: compliance of curriculum, accuracy and fairness of contents, selection and organization of contents. As results of investigation, system of organization of the teacher's guide books is needed. Goal, contents, teaching methods, and evaluations have to be consistent in describing mathematical terms. And errors in mathematics and mathematics education are examined more carefully. The teacher's guide books afford teachers many materials and informations to teach mathematics through classroom lessons. So more study on the teacher's guide books and developmental study for the model guidebooks is needed along with the revised curriculum and new textbooks.

Stiffness Modeling of a Low-DOF Parallel Robot (저자유도 병렬형 로봇의 강성 모델링)

  • Kim, Han-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • This paper presents a stiffness modeling of a low-DOF parallel robot, which takes into account of elastic deformations of joints and links, A low-DOF parallel robot is defined as a spatial parallel robot which has less than six degrees of freedom. Differently from serial chains in a full 6-DOF parallel robot, some of those in a low-DOF parallel robot may be subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each serial chain can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness of an F-DOF parallel robot can be modeled such that the moving platform is supported by 6 springs related to the reciprocal screws of actuations (F) and constraints (6-F). A general $6{\times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints, The compliance of each spring can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; a link is modeled as an Euler beam and the compliance matrix of rotational or prismatic joint is modeled as a $6{\times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is infinite. By summing joint and link compliance matrices with respect to a reference frame and applying unit reciprocal screw to the resulting compliance matrix of a serial chain, the compliance of a spring is determined by the resulting infinitesimal displacement. In order to illustrate this methodology, the stiffness of a Tricept parallel robot has been analyzed. Finally, a numerical example of the optimal design to maximize stiffness in a specified box-shape workspace is presented.