• Title/Summary/Keyword: fragmentation

Search Result 1,895, Processing Time 0.027 seconds

Sleep-Related Respiratory Disturbances (수면과 관련된 호흡장애)

  • Moon, Hwa-Sik
    • Sleep Medicine and Psychophysiology
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 1995
  • During sleep, relatively major respiratory physiological changes occur in healthy subjects. The contributions and interactions of voluntary and metabolic breathing control systems during waking and sleep are quite different Alterations of ventilatory control occur in chemosensitivity, response to mechanical loads, and stability of ventilation. The activities of intercostal muscles and muscles involved in regulating upper airway size are decreased during sleep. These respiratory physiological changes during sleep compromise the nocturnal ventilatory function, and sleep is an important physiological cause of the nocturnal alveolar hypoventilation. There are several causes of chronic alveolar hypoventilation including cardiopulmonary, neuromuscular diseases. Obstructive sleep apnea syndrome (OSAS) is an important cause of nocturnal hypoventilation and hypoxia. Coexistent cardiopulmonary or neuromuscular disease in patients with OSAS contributes to the development of diurnal alveolar hypoventilation, diurnal hypoxia and hypercapnia. The existing data indicates that nocturnal recurrent hypoxia and fragmentation of sleep in patients with OSAS contributes to the development of systemic hypertension and cardiac bradytachyarrhythmia, and diurnal pulmonary hypertension and cor pulmonale in patients with OSAS is usually present in patients with coexisting cardiac or pulmonary disease. Recent studies reported that untreated patients with OSAS had high long-term mortality rates, cardiovascular complications of OSAS had a major effect on mortality, and effective management of OSAS significantly decreased mortality.

  • PDF

Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells (Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과)

  • Kang, Hye-In;Kim, Jae-Yong;Cho, Hyun-Dong;Park, Kyung-Wuk;Kang, Jum-Soon;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1119-1125
    • /
    • 2010
  • To evaluate resveratrol as a prostate cancer preventive material, we investigated its anti-proliferative and apoptotic effects in RC-58T/h/SA#4 primary human prostate cancer cells. Resveratrol significantly decreased the number of viable RC-58T/h/SA#4 cells in a dose- and time-dependent manner. Resveratrol showed cytotoxicity against RC-58T/h/SA#4, LNCaP, PC-3 human prostate cancer cells with $IC_{50}$ values of 245, 320 and $340\;{\mu}M$, respectively. However the cytotoxic potential of resveratrol against normal RWPE-1 cells was lower ($IC_{50}=982\;{\mu}M$). Resveratrol induced cell death as evidenced by the increased formation of apoptotic bodies, nuclear condensation, sub-G1 phase, and DNA fragmentation. Resveratrol activated initiator caspases 8, and 9 as well as effector caspase 3 in a dose-dependent manner. Furthermore, the general caspase inhibitor z-VAD-fmk significantly inhibited resveratrol-induced apoptosis compared to cells without treatment. These results clearly indicate that resveratrol-induced apoptosis was dependent on caspase activation. Further, resveratrol modulated the down regulation of Bcl-2 (anti-apoptotic), and Bid. However, the level of Bax (pro-apoptotic) remained unchanged. These results suggest that resveratrol induced apoptosis in RC-58T/h/SA#4 cells via a mitochondrial-mediated caspase-dependent pathway, suggesting therapeutic potential against prostate cancer.

Anticancer Activity of Methyl Gallate in RC-58T/h/SA#4 Primary Human Prostate Cancer Cells (인체 전립선 암세포에서 Methyl Gallate의 항암효과)

  • Kwon, Soon Jae;Lee, Ju Hye;Kim, Jae Yong;Moon, Kwang Deog;Yee, Sung Tae;Seo, Kwon Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, we investigated the anticancer activity of methyl gallate (MG), which is the major biologically active component of Galla Rhois, in RC-58T/h/SA#4 human prostate cancer cells. MG inhibited cell proliferation in a dose-dependent manner. Cell death induced by MG increased the population of cells in sub-G1 phase, formation of apoptotic bodies, nuclear condensation, and DNA fragmentation. Apoptosis induced by MG was associated with activation of initiator caspases-8 and -9 as well as effector caspase-3. Endocrine disruptors such as dioxin and bisphenol A increased growth of RC-58T/h/SA#4 cells in charcoal-treated FBS (cFBS) medium. Cell proliferation was highest upon treatment with 1 nM and $0.1{\mu}M$ dioxin and bisphenol A, respectively. MG also dose-dependently inhibited cell proliferation in RC-58T/h/SA#4 cells treated with endocrine disruptors. These results indicate that MG exerts anticancer effects on RC-58T/h/SA#4 primary human prostate cancer cells.

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.

Taxol Produced from Endophytic Fungi Induces Apoptosis in Human Breast, Cervical and Ovarian Cancer Cells

  • Wang, Xin;Wang, Chao;Sun, Yu-Ting;Sun, Chuan-Zhen;Zhang, Yue;Wang, Xiao-Hua;Zhao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.125-131
    • /
    • 2015
  • Currently, taxol is mainly extracted from the bark of yews; however, this method can not meet its increasing demand on the market because yews grow very slowly and are a rare and endangered species belonging to first-level conservation plants. Recently, increasing efforts have been made to develop alternative means of taxol production; microbe fermentation would be a very promising method to increase the production scale of taxol. To determine the activities of the taxol extracted from endophytic fungus N. sylviforme HDFS4-26 in inhibiting the growth and causing the apoptosis of cancer cells, on comparison with the taxol extracted from the bark of yew, we used cellular morphology, cell counting kit (CCK-8) assay, staining (HO33258/PI and Giemsa), DNA agarose gel electrophoresis and flow cytometry (FCM) analyses to determine the apoptosis status of breast cancer MCF-7 cells, cervical cancer HeLa cells and ovarian cancer HO8910 cells. Our results showed that the fungal taxol inhibited the growth of MCF-7, HeLa and HO8910 cells in a dose-and time-dependent manner. IC50 values of fungal taxol for HeLa, MCF-7 and HO8910 cells were $0.1-1.0{\mu}g/ml$, $0.001-0.01{\mu}g/ml$ and $0.01-0.1{\mu}g/ml$, respectively. The fungal taxol induced these tumor cells to undergo apoptosis with typical apoptotic characteristics, including morphological changes for chromatin condensation, chromatin crescent formation, nucleus fragmentation, apoptotic body formation and G2/M cell cycle arrest. The fungal taxol at the $0.01-1.0{\mu}g/ml$ had significant effects of inducing apoptosis between 24-48 h, which was the same as that of taxol extracted from yews. This study offers important information and a new resource for the production of an important anticancer drug by endofungus fermentation.

Anti-metastatic Effects on B16F10 Melanoma Cells of Extracts and Two Prenylated Xanthones Isolated from Maclura amboinensis Bl. Roots

  • Siripong, Pongpun;Rassamee, Kitiya;Piyaviriyakul, Suratsawadee;Yahuafai, Jantana;Kanokmedhakul, Kwanjai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3519-3528
    • /
    • 2012
  • Inhibitory effects of Maclura amboinenesis Bl, one plant used traditionally for the treatment of cancers, on metastatic potential of highly metastatic B16F10 melanoma cells were investigated in vitro. Cell proliferation was assessed using the MTT colorimetric assay. Details of metastatic capabilities including invasion, migration and adhesion of B16F10 melanoma cells were examined by Boyden Chamber invasion and migration, scratch motility and cell attachment assays, respectively. The results demonstrated that n-hexane and chloroform extracts exhibited potent anti-proliferative effects (p<0.01), whereas the methanol and aqueous extracts had less pronounced effects after 24 h exposure. Bioactivity-guided chromatographic fractionation of both active n-hexane and chloroform extracts led to the isolation of two main prenylated xanthones and characterization as macluraxanthone and gerontoxanthone-I, respectively, their structures being identified by comparison with the spectral data. Interestingly, both exhibited potent effective effects. At non-toxic effective doses, n-hexane and chloroform extracts (10 and $30{\mu}g/ml$) as well as macluraxanthone and gerontoxanthone-I (3 and $10{\mu}M$) significantly inhibited B16F10 cell invasion, to a greater extent than $10{\mu}m$ doxorubicin, while reducing migration of cancer cells without cellular cytotoxicity. Moreover, exposure of B16F10 melanoma cells to high concentrations of chloroform ($30{\mu}g/ml$) and geratoxanthone-I ($20{\mu}M$) for 24 h resulted in delayed adhesion and retarded colonization. As insights into mechanisms of action, typical morphological changes of apoptotic cells e.g. membrane blebbing, chromatin condensation, nuclear fragmentation, apoptotic bodies and loss of adhesion as well as cell cycle arrest in the G1 phase with increase of sub-G1 cell proportions, detected by Hoechst 33342 staining and flow cytometry were observed, suggesting DNA damage and subsequent apoptotic cell death. Taken together, our findings indicate for the first time that active n-hexane and chloroform extracts as well as macluraxanthone and gerontoxanthone-I isolated from Maclura amboinensis Bl. roots affect multistep of cancer metastasis processes including proliferation, adhesion, invasion and migration, possibly through induction of apoptosis of highly metastatic B16F10 melanoma cells. Based on these data, M. amboinensis Bl. represents a potential candidate novel chemopreventive and/or chemotherapeutic agent. Additionally, they also support its ethno-medicinal usage for cancer prevention and/or chemotherapy.

Beta-asarone Induces LoVo Colon Cancer Cell Apoptosis by Up-regulation of Caspases through a Mitochondrial Pathway in vitro and in vivo

  • Zou, Xi;Liu, Shen-Lin;Zhou, Jin-Yong;Wu, Jian;Ling, Bo-Fan;Wang, Rui-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5291-5298
    • /
    • 2012
  • Beta-asarone is one of the main bioactive constituents in traditional Chinese medicine Acorus calamu. Previous studies have shown that it has antifungal and anthelmintic activities. However, little is known about its anticancer effects. This study aimed to determine inhibitory effects on LoVo colon cancer cell proliferation and to clarify the underlying mechanisms in vitro and in vivo. Dose-response and time-course anti-proliferation effects were examined by MTT assay. Our results demonstrated that LoVo cell viability showed dose- and time-dependence on ${\beta}$-asarone. We further assessed anti-proliferation effects as ${\beta}$-asarone-induced apoptosis by annexin V-fluorescein isothiocyanate/propidium iodide assay usinga flow cytometer and observed characteristic nuclear fragmentation and chromatin condensation of apoptosis by microscopy. Moreover, we found the apoptosis to be induced through the mitochondrial/caspase pathway by decreasing mitochondrial membrane potential (MMP) and reducing the Bcl-2-to-Bax ratio, in addition to activating the caspase-9 and caspase-3 cascades. Additionally, the apoptosis could be inhibited by a pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). When nude mice bearing LoVo tumor xenografts were treated with ${\beta}$-asarone, tumor volumes were reduced and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays of excised tissue also demonstrated apoptotic changes. Taken together, these findings for the first time provide evidence that ${\beta}$-asarone can suppress the growth of colon cancer and the induced apoptosis is possibly mediated through mitochondria/caspase pathways.

Neuroprotective Effects of Cheongnoemyeongsin-hwan against Hydrogen Peroxide-induced DNA Damage and Apoptosis in Human Neuronal-Derived SH-SY5Y Cells (인체 신경세포에서 청뇌명신환(淸腦明神丸)의 산화적 스트레스에 대한 세포보호 효과)

  • Pi, Guk Hyun;Hwang, Won Deuk
    • Herbal Formula Science
    • /
    • v.25 no.1
    • /
    • pp.51-68
    • /
    • 2017
  • Objectives : Oxidative stress due to excessive accumulation of reactive oxygen species (ROS) is one of the risk factors for the development of several chronic diseases, including neurodegenerative diseases. Methods : In the present study, we investigated the protective effects of cheongnoemyeongsin-hwan (CNMSH) against oxidative stress‑induced cellular damage and elucidated the underlying mechanisms in neuronal-derived SH-SY5Y cells. Results : Our results revealed that treatment with CNMSH prior to hydrogen peroxide (H2O2) exposure significantly increased the SH-SY5Y cell viability, indicating that the exposure of the SH-SY5Y cells to CNMSH conferred a protective effect against oxidative stress. CNMSH also effectively attenuated H2O2‑induced comet tail formation, and decreased the phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V‑positive cells. In addition, CNMSH exhibited scavenging activity against intracellular ROS generation and restored the mitochondria membrane potential (MMP) loss that were induced by H2O2, suggesting that CNMSH prevents H2O2‑induced DNA damage and cell apoptosis. Moreover, H2O2 enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with CNMSH. Furthermore, CNMSH increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, CNMSH is able to protect SH-SY5Y cells from H2O2-induced apoptosis throughout blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating Nrf2/HO-1 signaling pathway. Conclusions : Therefore, we believed that CNMSH may potentially serve as an agent for the treatment and prevention of neurodegenerative diseases caused by oxidative stress.

Graphene Quantum Dot Interfacial Layer for Organic/Inorganic Hybrid Photovoltaics Prepared by a Facile Solution Process (용액 공정을 통한 그래핀 양자점 삽입형 유/무기 하이브리드 태양전지 제작)

  • Kim, Youngjun;Park, Byoungnam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.646-651
    • /
    • 2018
  • This paper reports that the electronic properties at a $P3HT/TiO_2$ interface associated with exciton dissociation and transport can be tailored by the insertion of a graphene quantum dot (GQD) layer. For donor/acceptor interface modification in an $ITO/TiO_2/P3HT/Al$ photovoltaic (PV) device, a continuous GQD film was prepared by a sonication treatment in solution that simplifies the conventional processes, including laser fragmentation and hydrothermal treatment, which limits a variety of component layers and involves low cost processing. The high conductivity and favorable energy alignment for exciton dissociation of the GQD layer increased the fill factor and short circuit current. The origin of the improved parameters is discussed in terms of the broad light absorption and enhanced interfacial carrier transport.

Induction of Apoptotic Cell Death and Depression of Bcl-2 Protein Levels by Trans-10,cis-12 Conjugated Linoleic Acid in Human Prostate Cancer (인간 전립선 암세포인 TSU-Pr1에서 trans-10,cis-12 Conjugated Linoleic Acid에 의한 Apoptosis 유발과 Bcl-2 단백질의 발현억제)

  • 오윤신;김은지;이상곤;정차권;강일준;신현경;윤정한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1126-1133
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a collective term for a class of positional and geometric conjugated dienoic isomers of linoleic acid (LA) and has anti-cancer activity in experimental animals. We have previously observed that an isomeric mixture of CLA and trans-10,cis-12 (t10c12) inhibited cell growth in a dose-dependent manner whereas LA and cis-9,trans-11 (c9t11) had no effect. The present study examined whether the CLA mixture and t10c12 induce apoptotic cell death. TSU-Prl cells were incubated for three days in serum-free medium in the absence or presence of individual fatty acids, and the DNA fragmentation assay was performed. Cells treated with the CLA mixture or t10c12 produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. By contrast, LA and c9t11 had no effect. Western immunoblot analysis of total lysates revealed that t10c12 reduced anti-apoptotic, 26 kDa, Bcl-2 protein levels by 49$\pm$8% compared with controls, whereas this CLA isomer did not alter pro-apoptotic,21 kDa, Bax protein levels. These results suggest that growth inhibitory effect of the t10c12 CLA isomer may, at least in part, be attributed to Increased apoptotic death in TSU-Prl cells.