Browse > Article
http://dx.doi.org/10.5762/KAIS.2018.19.6.646

Graphene Quantum Dot Interfacial Layer for Organic/Inorganic Hybrid Photovoltaics Prepared by a Facile Solution Process  

Kim, Youngjun (Department of Materials Science and Engineering, Hongik University)
Park, Byoungnam (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.19, no.6, 2018 , pp. 646-651 More about this Journal
Abstract
This paper reports that the electronic properties at a $P3HT/TiO_2$ interface associated with exciton dissociation and transport can be tailored by the insertion of a graphene quantum dot (GQD) layer. For donor/acceptor interface modification in an $ITO/TiO_2/P3HT/Al$ photovoltaic (PV) device, a continuous GQD film was prepared by a sonication treatment in solution that simplifies the conventional processes, including laser fragmentation and hydrothermal treatment, which limits a variety of component layers and involves low cost processing. The high conductivity and favorable energy alignment for exciton dissociation of the GQD layer increased the fill factor and short circuit current. The origin of the improved parameters is discussed in terms of the broad light absorption and enhanced interfacial carrier transport.
Keywords
Buffer Layer; Graphene Quantum Dot; Interface; Photovoltaics; P3HT; Solar Cell; $TiO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Graetzel, Michael, et al., "Materials interface engineering for solution-processed photovoltaics.", Nature, 488.7411 (2012): 304.   DOI
2 de Freitas, Jilian Nei, Joao Paulo de Carvalho Alves, and Ana Flavia Nogueira., "Hybrid Solar Cells: Effects of the Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells.", Nanoenergy. Springer, Cham, 2018. 1-68.
3 Reeja-Jayan, B., and A. Manthiram., "Influence of polymer-metal interface on the photovoltaic properties and long-term stability of nc-TiO2-P3HT hybrid solar cells.", Solar Energy Materials and Solar Cells, 94.5 (2010): 907-914. DOI: https://doi.org/10.1016/j.solmat.2010.01.021   DOI
4 Reeja-Jayan, B., and A. Manthiram., "Influence of polymer-metal interface on the photovoltaic properties and long-term stability of nc-TiO2-P3HT hybrid solar cells.", Solar Energy Materials and Solar Cells, 94.5 (2010): 907-914. DOI: https://doi.org/10.1016/j.solmat.2010.01.021   DOI
5 Shoaee, Safa, et al., "Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance.", Advanced materials, 26.2 (2014): 263-268. DOI: https://doi.org/10.1002/adma.201303304   DOI
6 Baran, Derya, et al., "Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells.", Nature materials, 16.3 (2017): 363.   DOI
7 Dang, Minh Trung, Lionel Hirsch, and Guillaume Wantz., "P3HT: PCBM, best seller in polymer photovoltaic research.", Advanced Materials, 23.31 (2011): 3597-3602. DOI: https://doi.org/10.1002/adma.201100792   DOI
8 Zhu, Zonglong, et al., "Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots.", Journal of the American Chemical Society, 136.10 (2014): 3760-3763. DOI: https://doi.org/10.1021/ja4132246   DOI
9 Ahmad, Muhammad Shakeel, A. K. Pandey, and Nasrudin Abd Rahim., "Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review.", Renewable and Sustainable Energy Reviews, 77 (2017): 89-108. DOI: https://doi.org/10.1016/j.rser.2017.03.129   DOI
10 Seo, Ji-Youn, et al., "Boosting the Efficiency of Perovskite Solar Cells with CsBr‐Modified Mesoporous TiO2 Beads as Electron‐Selective Contact.", Advanced Functional Materials (2018). DOI: https://doi.org/10.1002/adfm.201705763
11 Qin, Yuancheng, et al., "Top-down strategy toward versatile graphene quantum dots for organic/inorganic hybrid solar cells." ACS Sustainable Chemistry & Engineering, 3.4 (2015): 637-644. DOI: https://doi.org/10.1021/sc500761n   DOI
12 Li, Liang-shi, and Xin Yan., "Colloidal graphene quantum dots.", The Journal of Physical Chemistry Letters, 1.17 (2010): 2572-2576. DOI: https://doi.org/10.1021/jz100862f   DOI
13 Gupta, Vinay, et al., "Luminscent graphene quantum dots for organic photovoltaic devices.", Journal of the American Chemical Society 133.26 (2011): 9960-9963. DOI: https://doi.org/10.1021/ja2036749   DOI
14 Sakamoto, Junji, et al., "Two‐Dimensional Polymers: Just a Dream of Synthetic Chemists.", Angewandte Chemie International Edition, 48.6 (2009): 1030-1069. DOI: https://doi.org/10.1002/anie.200801863   DOI
15 Gritzner, G., and J. Kuta., "Recommendations on reporting electrode potentials in nonaqueous solvents (Recommendations 1983).", Pure and applied chemistry, 56.4 (1984): 461-466. DOI: https://doi.org/10.1351/pac198456040461   DOI
16 Bredas, J. L., et al., "Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole.", Journal of the American Chemical Society, 105.22 (1983): 6555-6559. DOI: https://doi.org/10.1021/ja00360a004   DOI
17 Li, Yan, et al., "Nitrogen-doped graphene quantum dots with oxygen-rich functional groups." Journal of the American Chemical Society, 134.1 (2011): 15-18. DOI: https://doi.org/10.1021/ja206030c
18 Bacon, Mitchell, Siobhan J. Bradley, and Thomas Nann., "Graphene quantum dots.", Particle & Particle Systems Characterization, 31.4 (2014): 415-428. DOI: https://doi.org/10.1002/ppsc.201300252   DOI