• Title/Summary/Keyword: fracture toughness $K_{IC}$

Search Result 111, Processing Time 0.02 seconds

Studies on Cure Behaviors, Dielectric Characteristics and Mechanical Properties of DGEBA/Poly(ethylene terephthalate) Blends

  • Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.585-590
    • /
    • 2009
  • The cure behaviors, dielectric characteristics and fracture toughness of diglycidylether of bisphenol-A (DGEBA)/poly(ethylene terephthalate) (PET) blend system were investigated. The degree of conversion for the DGEBA/PET blend system was measured using Fourier transform infrared (FTIR) spectroscopy. The cure kinetics were investigated by measuring the cure activation energies ($E_a$) with dynamic differential scanning calorimetry (DSC). The dielectric characteristic was examined by dielectric analysis (DEA). The mechanical properties were investigated by measuring the critical stress intensity factor ($K_{IC}$), critical strain energy release rate ($G_{IC}$), and impact strength test. As a result, DGEBAIPET was successfully blended. The Ea of the blend system was increased with increasing PET content to a maximum at 10 phr PET. The dielectric constant was decreased with increasing PET content. The mechanical properties of the blend system were also superior to those of the neat DGEBA. These results were attributed to the increased cross-linking density of the blend system, resulting from the interaction between the epoxy group of DGEBA and the carboxyl group of PET.

Development and Application of Mode II Fracture Toughness Test Method Using Rock Core Specimen (시추코어를 이용한 암석의 mode II 파괴인성 시험법 개발과 적용)

  • Jung, Yong-Bok;Park, Eui-Seob;Kim, Hyunwoo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.396-408
    • /
    • 2016
  • Rock fracture mechanics has been widely applied to various fields of rock and civil engineering. But most researches covered mode I behavior, though mode II behavior is dominant in rock engineering. Until now, there is only one ISRM suggested method for mode II toughness of rock. A new SCC (Short Core in Compression) mode II toughness test method was developed considering 1) application of confining pressure, 2) easiness of notch creation, 3) utilization of existing equipment, 4) simple test procedure. The stress intensity factors were determined by 3D finite element method considering line and distributed loading conditions. The tests with granite specimens were carried out using MTS 815 rock test system with a loading rate of 0.002 mm/s. The mean value of mode II fracture toughness of granite showed $2.33MPa{\sqrt{m}}$. Mode I toughness of the same granite was $1.12MPa{\sqrt{m}}$, determined by Brazilian disk test and $K_{IIC}/K_{IC}=2.08$. The smooth fracture surface with rock powder formation also supported mode II behavior of SCC method. The SCC method can be used for the determination of mode II fracture toughness of rocks based on the current results.

Toughening of Epoxy Resin with PES-CTBN-PES Triblock Copolymers (PES-CTBN-PES 공중합체를 이용한 에폭시 수지의 강인성 향상 연구)

  • 김형륜;명범영;송경헌;육종일;윤태호
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.246-253
    • /
    • 2001
  • Amino terminated PES-CTBN-PES triblock copolymer was synthesized from PES oligomer and commercial CTBN rubber (CTBN1300$\times$13), and molecular weight of the copolymer was controlled to be 15000 g/mole. The copolymer was utilized to toughen diglycidyl ether of bisphenol-A (DGEBA) epoxy resin which was cured with 4,4'-diaminodi-phenylsulfone (DDS) and subjected to the measurement of thermal properties, fracture toughness ( $K_{IC}$), flexural properties and solvent resistance. The properties were compared with those from the samples modified by CTBN/PES blends. The maximum loading of copolymer into the epoxy resin was 40 wt% without utilizing solvent, at which $K_{IC}$ fracture toughness of 2.21 MPa${\cdot}m^{0.5}$ was obtained without sacrificing flexural properties and chemical resistance. However, the epoxy resin modified with PES/CTBN blend exhibited much lower $K_{IC}$ and flexural properties compared to the epoxy resins toughened by PES-CTBN-PES copolymers.

  • PDF

Fabrication and Application of Nano-Fibers for Korean Post-Textile Industry (나노섬유의 제조와 응용 및 한국의 차세대 섬유산업)

  • 이재락;박수진;김효중;정효진;지승용;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.3-6
    • /
    • 2003
  • In this work, poly(ethylene oxide) nanofibers were fabricated by electrospinning to prepare nanofibers-reinforced composites. And the PEO powders-impregnated composites were also prepared to compare with physicochemical properties of nanofibers-reinforced composites. Morphology and fiber diameter of PEO nanofibers were determined by SEM observation. Mechanical interfacial properties of the composites were investigated in fracture toughness tests and interlaminar shear strength (ILSS) test. As a result, the fiber diameter decreased in increasing applied voltage. However the optimum condition for the fiber formation was 15 ㎸, resulting from increasing of jet instability at high voltage and the prepared PEO nanofibers were useful in fiber reinforced composites. The PEO-based nanofibers-reinforced composites showed an improvement of fracture toughness factors ($K_{IC} and G_{ IC}$) and ILSS, compared to the composites impregnated with PEO powders. These results were noted that the nanofibers had higher specific surface area and larger aspect ratio than those of the powder, which played an important role in improving the mechanical interfacial properties of the composites.

  • PDF

Immiscibility, nucleation and mechanical properties in the lithia-baria-silica system

  • Ertug, Burcu
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.394-400
    • /
    • 2018
  • The current work investigates the effects of nucleation heat treatments, on the microstructure and mechanical properties of a novel silicate glass in $Li_2O-BaO-SiO_2$ system with 1 mol% $P_2O_5$ as nucleating agent. As-cast glass was exposed to nucleation heat treatments at $490-550^{\circ}C$ for 1-3 h. The microstructural examination was performed by SEM/EDS. The highest Vickers microhardness was determined to be 650 Hv for the sample heat treated at $550^{\circ}C$ for 1 h. The increase in the nucleation time also affected Vickers microhardness and the highest one was determined to be 600 Hv after nucleation for 3 h. The fracture toughness, $K_{IC}$ reached $2.51MPa.m^{1/2}$ after nucleation at $550^{\circ}C$ for 1 h. The nucleation temperatures had a more pronounced effect on the fracture toughnesses in comparison to nucleation times. The indentation toughness data was used to determine Weibull parameters from Ln ln [1/(1-P)]-$lnK_{IC}$ plots. Weibull modulus, m of the samples nucleated at 500, 510, 530, $550^{\circ}C$ for 1h. and $540^{\circ}C$ for 2 h. were determined similarly to be 3.8, 3.5, 4.7 and 3.9, respectively. The rest of the samples indicated higher Weibull moduli, which may be attributed to the formations of microcracks due to the mismatch in between newly formed crystals and remaining glassy matrix.

Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation (유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가)

  • Bae, Keun Hyung;Jeon, Jun Young;Han, Jae Jun;Nam, Hyun Suk;Lee, Dae Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.693-701
    • /
    • 2016
  • In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness($J_{IC}$) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

Cure Behaviors and Fracture Toughness of PEl/Difunctional Epoxy Blends (PEI/DGEBA 블랜드계의 열적특성 및 파괴인성)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shinyoung
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.33-40
    • /
    • 2003
  • In this work, diglycidyl ether of bisphenol A (DGEBA)/polyetherimide (PEI) blends were cured using 4,4-diaminodiphenyl methane (DDM). And the effects of addition of different PEI contents to neat DGEBA were investigated in the thermal properties and fracture toughness of the blends. The contents of contents of containing PEI were varied in 0, 2.5, 5, 7.5, and 10 phr. The cure activation energies ($E_a$) of the cured specimens were determined by Kissinger equation and the mechanical interfacial properties of the specimens were performed by critical stress intensity factor ($K_{IC}$). Also their surfaces were examined by using a scanning electron microscope (SEM) and the surface energetics of blends was determined by contact angles. As a result, $E_a$ and $K_{IC}$ showed maximum values in the 7.5 phr PEI. This result was interpreted in the increment of the network structure of DGEBA/PEI blends. Also, the surface energetics of the DGEBA/PEI blends showed a similar behavior with the results of $K_{IC}$. This was probably due to the improving of specific or polor component of the surface free energy of DGEBA/PEI blends, resulting in increasing the hydrogen bonding of the hydroxyl and imide groups of the blends.

  • PDF

Improvement of Adhesion Strength between Cu-based Leadframe and Fpoxy Molding Compound

  • Lee, Ho-Yoing
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.23-28
    • /
    • 2000
  • A block-oxide layer was formed on the surface of Cu-based leadframe by chamical oxidation method in order to enhance the adhesion strength between Cu-based leadframe and epoxy molding compound (EMC) Using sandwiched double cantilever beam (SDCB) specimens, the adesion strength was measured in terms of interfacial fracture toughness, G$\sub$IC//Results showed that the black-oxide layer was composed of two kinds of layers: pebble-like Cu$_2$O layer and acicular CuO layer, At the initial stage of oxidation the Cu$_2$O layer was preferentially formed and thickened up to around 200 nm whithin 1 minute of the oxidation time. Then the CuO layer started to from atop of the Cu$_2$O layer and thickened up to around 1300 nm until 20 minutes. As soon as the CuO layer formed, the thickness of Cu$_2$O layer began to reduce and finally reached to around 150 nm. The pre-cleaned and the Cu$_2$O coated leadframes showed almost no adhesion of EMC, however, as the CuO precipitates appeared and became continuous, G$\sub$IC/ increased up to around 80 J/㎡. Further oxidation raised G$\sub$IC/ up. to around 100 J/㎡.

  • PDF

A Study on Determination of $J_{IC}$ by Time-Frequency Analysis Method (시간-주파수 해석법에 의한 $J_{IC}$결정에 관한 연구)

  • Nam, Gi-U;An, Seok-Hwan;Kim, Bong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.765-771
    • /
    • 2001
  • Elastic-plastic fracture toughness JIC can be used a s an effective design criterion in elastic-plastic fracture mechanics. Among the JIC test methods approved by ASTM, unloading compliance method was used in this study. In order to examine the relationship between fracture behavior of JIC test and AE signals, the post processing of AE signals has been carried out by Short Time Fourier Transform(STFT), one of the time-frequency analysis methods. The objective of this study is to evaluate the application of characterization of AE signals for unloading compliance method of JIC test. As a result of time-frequency analysis, we could extract the AE from the raw signal and analyze the frequencies in AE signal at the same time. AE signal generated by elastic-plastic fracture of material has some different aspects at elastic and plastic ranges, or the first portion of crack growth by fracture. First of all, increased energy recorded and detected by using AE count method increase rapidly from the start of ductile fracture. The variation of main frequency range with time-frequency analysis method could be confirmed. We could know fracture behavior of interior material by examination AE characteristics generated in real-time when elastic-plastic fracture occurred in material under loading.

고강도 및 파괴인성을 갖는 AI-Li-Cu 합금 개발

  • Kim, Song-Hui;Yun, Yeo-Beom;Hwang, Yeong-Hwa;Choe, Chang-U;Hong, Jun-Pyo;Lee, Eung-Jo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1993
  • High strength and fracture toughness of Al-Li-Cu alloy(2090 Al alloy) have been achieved by the improvement of melting and casting, extrusion and heat treatment techniques. To establish the sucessful process for semi-industrial scale ingot(20Kg) the following areas have been investigated: (1) Improvement of melting and casting techniques for ingot by introducing atmospheric modifications, vacuum and rotary degassing, and deslagging. (2) The effect of heat treatment on mechanical properties (3) Mechanical characterization by tensile test, fracture toughness test and fatigue crack propagation test. High mechanical properties were found to be intimately related with ingot soundness. Tensile strength of final products varied from 534MPa to 566MPa in peak aged condition while elongation/ductility ranged from 9.0% to 11.9%. From the fracture toughness test with using compact tensile specimen, plane strain fracture toughness($K_{Ic}$) appeared to be 39MPa${\surd}$m in peak aged condition and 23MPa${\surd}$ m in underaged condition. When load ratios of 0.1, 0.3 and 0.5 were given ${\Delta}K_{th}$ was 6.0MPa${\surd}$ m, 5.3MPa${\surd}$ m and 4.3MPa${\surd}$ m respectively.

  • PDF