고강도 및 파괴인성을 갖는 AI-Li-Cu 합금 개발

  • Kim, Song-Hui (Dept.of Materials Science & Engineering, Kangwon National University) ;
  • Yun, Yeo-Beom (Dept.of Materials Science & Engineering, Kangwon National University) ;
  • Hwang, Yeong-Hwa (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Choe, Chang-U (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Hong, Jun-Pyo (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Lee, Eung-Jo (Agency for Defense Development)
  • Published : 1993.06.01

Abstract

High strength and fracture toughness of Al-Li-Cu alloy(2090 Al alloy) have been achieved by the improvement of melting and casting, extrusion and heat treatment techniques. To establish the sucessful process for semi-industrial scale ingot(20Kg) the following areas have been investigated: (1) Improvement of melting and casting techniques for ingot by introducing atmospheric modifications, vacuum and rotary degassing, and deslagging. (2) The effect of heat treatment on mechanical properties (3) Mechanical characterization by tensile test, fracture toughness test and fatigue crack propagation test. High mechanical properties were found to be intimately related with ingot soundness. Tensile strength of final products varied from 534MPa to 566MPa in peak aged condition while elongation/ductility ranged from 9.0% to 11.9%. From the fracture toughness test with using compact tensile specimen, plane strain fracture toughness($K_{Ic}$) appeared to be 39MPa${\surd}$m in peak aged condition and 23MPa${\surd}$ m in underaged condition. When load ratios of 0.1, 0.3 and 0.5 were given ${\Delta}K_{th}$ was 6.0MPa${\surd}$ m, 5.3MPa${\surd}$ m and 4.3MPa${\surd}$ m respectively.

용해와 주조, 압출과 열처리 기술의개선으로 고강도, 고파괴인성의 AI-Li-Cu 합금(2090 AI합금)을 제조하였다. 또한 준 산업용 규모(20kg)의 잉고트 제조공정을 확립하기 위해서 (1)선 (2)기계적 성질들에 미치는 열처리 영향 (3) 인장시험, 파괴인성 시험($K_{Ic}$) 및 피로균열 전파시계를 갖고 있으며 최종 제품의 인장강도는 최대시효 조건에서 534MPa부터 566MPa이었고 연신율은 9%에서 11.9%정도였다. C-T 시편을 이용한 파괴인성 시험 결과 최대시효 조건에서 평면변형 파괴인성 ($K_{Ic}$)값은 39MPa$\surd$m였고 미시효 조건에서는 23MPa$\surd$m였다. 또한 0.1, 0.3, 0.5의 하중비에서 피로균열 전파시험을 행하였을때 임계응력 확대계수(${\Delta}K_{th}$)는 각각 6.0, 5.3, 4.3 MPa$\surd$m이었다.

Keywords

References

  1. Aluminum-Lithium Ⅱ v.201 D.P. Hill;D.N. Wiliams;E.A. Starke Jr.(ed.);T.H. Sanders Jr.(ed.);
  2. Aluminum-Lithium Alloy Ⅰ v.69 A. Gysler;R. Crooks;E.A. Starke Jr.;T.H. Sanders Jr.(ed.);E.A. Starke Jr.(ed.)
  3. Thermomechanical Processing of Aluminum Alloys H.J. Mcqueen
  4. Metall. Trans. A. v.12A J. Lindigkeit
  5. T. Met. Sci. v.22 no.1521 E.J. Lavernia;N.J. Grant
  6. 1992재료강도 심포지엄 학술대회 논문집 v.53 윤길수;정호철;이종수;박찬경
  7. 대한금속학회지 논문집 v.30 no.417 손기선;이성학;김낙준;이종건
  8. J. Met. Sci. v.21 no.1553 T.S. Srivatsan;E.J. Coyne Jr.;E.A. Starke Jr.
  9. Trans. AIME. v.60 no.661 A.J. Ecevily Jr.;J.B. Clark;A.P. Bond
  10. Metal prog v.56 N.V. Hyatt;W.E. Quist;J.T. Quinlivian
  11. Metal. Trans. v.4A no.1133 E. DI Russo;M. Conserva;R. Gatto;H. Markus
  12. ASTM STP 738 R.J. Bucci
  13. J. Master. Sci. v.25 no.531 Ref. E.P. Buttler;N.J. Owen;D.J. Field
  14. Metal Handbook(9th edition) v.2 American Society for Metals
  15. J. Basic Engng. Trans. v.89 no.459 R.G. Forman;V.E. Kearney;R.M. Eagle
  16. Fracture v.28 W.R. Sperr;D.M.R. Taplin(ed.)
  17. Mater. Sci. Engng. v.9 no.231 M. Klesnil;P. Lucas