Studies on Cure Behaviors, Dielectric Characteristics and Mechanical Properties of DGEBA/Poly(ethylene terephthalate) Blends

  • Published : 2009.08.25

Abstract

The cure behaviors, dielectric characteristics and fracture toughness of diglycidylether of bisphenol-A (DGEBA)/poly(ethylene terephthalate) (PET) blend system were investigated. The degree of conversion for the DGEBA/PET blend system was measured using Fourier transform infrared (FTIR) spectroscopy. The cure kinetics were investigated by measuring the cure activation energies ($E_a$) with dynamic differential scanning calorimetry (DSC). The dielectric characteristic was examined by dielectric analysis (DEA). The mechanical properties were investigated by measuring the critical stress intensity factor ($K_{IC}$), critical strain energy release rate ($G_{IC}$), and impact strength test. As a result, DGEBAIPET was successfully blended. The Ea of the blend system was increased with increasing PET content to a maximum at 10 phr PET. The dielectric constant was decreased with increasing PET content. The mechanical properties of the blend system were also superior to those of the neat DGEBA. These results were attributed to the increased cross-linking density of the blend system, resulting from the interaction between the epoxy group of DGEBA and the carboxyl group of PET.

Keywords

References

  1. L. F. Thompson, C. G. Willson, and S. Tagawa, Polymers for Microelectronics: Resists and Dielectrics, ACS Symposium, Washington, DC, 1994, No. 537
  2. J. Seo, W. Jang, and H. Han, Macromol. Res., 15, 10 (2007) https://doi.org/10.1007/BF03218746
  3. F. L. Jin and S. J. Park, Polym. Int., 57, 577 (2008) https://doi.org/10.1002/pi.2280
  4. Y. Choe, M. Kim, and W. Kim, Macromol. Res., 11, 267 (2003) https://doi.org/10.1007/BF03218363
  5. R. S. Bauer, Epoxy Resin Chemistry, Advanced in Chemistry Series, American Chemical Society, Washington DC, 1979, No. 114
  6. C. A. May, Epoxy resins, New York, Marcel Dekker, 1998
  7. S. J. Park, T. J. Kim, and H. Y. Kim, Polym. Int., 51, 386 (2002) https://doi.org/10.1002/pi.869
  8. S. J. Park, H. Y. Lee, M. Han, and S. K. Hong, J. Colloid Interf. Sci., 270, 288 (2004) https://doi.org/10.1016/S0021-9797(03)00757-4
  9. S. M. Choi, E. K. Lee, and S. Y. Choi, Elastomer(Korea), 43, 147 (2008)
  10. J. L. Han, S. M. Tseng, J. H. Mai, and K. H. Hsieh, Angew. Makromol. Chem., 181, 193 (1990) https://doi.org/10.1002/macp.1980.021810117
  11. C. Fei and D. C. Wayne, Eur. Polym. J., 44, 1796 (2008) https://doi.org/10.1016/j.eurpolymj.2008.03.001
  12. J. Lee, G. R. Yandek, and T. Kyu, Polymer, 46, 12511 (2005) https://doi.org/10.1016/j.polymer.2005.01.109
  13. F. L. Jin and S. J. Park, Polym. Degrad. Stabil., 92, 509 (2007) https://doi.org/10.1016/j.polymdegradstab.2006.04.007
  14. C. S. Zhao, F. L. Huang, W. C. Xiong, and Y. Z. Wang, Polym. Degrad. Stabil., 93, 1188 (2008) https://doi.org/10.1016/j.polymdegradstab.2008.03.010
  15. Y. H. Shin, W. D. Lee, and S. S. Im, Macromol. Res., 15, 662 (2007) https://doi.org/10.1007/BF03218947
  16. J. Bandyopadhyay, S. S. Ray, and M. Bousmina, J. Ind. Eng. Chem., 13, 614 (2007)
  17. S. J. Park, J. S. Jin, J. R. Lee, and P. K. Pak, Polymer(Korea), 24, 245 (2000)
  18. H. E. Kissinger, Anal. Chem., 29, 1072 (1957)
  19. E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958) https://doi.org/10.1021/j150562a003
  20. A. R. Von Hippel, Dielectric Materials and Applications, Artech House Pub., New York, 1954
  21. F. P. La Mantia, R. Schifani, and D. Aciemo, J. Appl. Polym. Sci., 28, 3075 (1983) https://doi.org/10.1002/app.1983.070281007
  22. S. J. Park, D. I. Seo, and C. W. Nah, J. Colloid Interf. Sci., 251, 225 (2002) https://doi.org/10.1006/jcis.2002.8336
  23. R. P. Smith, D. Li, D. W. Francis, J. Chappuis, and A. W. Neumann, J. Colloid Interf. Sci., 157, 478 (1993) https://doi.org/10.1006/jcis.1993.1210
  24. H. Zhang, S. Sun, M. Ren, Q. Chen, J. Song, H. Zhang, and Z. Mo, J. Appl. Polym. Sci., 109, 4082 (2008) https://doi.org/10.1002/app.24012