• Title/Summary/Keyword: fracture toughness $K_{IC}$

Search Result 111, Processing Time 0.027 seconds

Fracture Properties of Concrete by using the J-integral (J-적분 평가를 이용한 콘크리트 파괴 특성)

  • 최신호;계해주;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.371-378
    • /
    • 2001
  • Recently, the parameters, models, and experimentations, which evaluate the fracture properties of concrete, have been proposed by many researchers, and their developments allow us to analyze the non-linear and quasi-brittle fracture mechanisms. In this paper, a brief treatment of the fracture parameters was presented and the experiments of 3-point bending tests were conducted to compare J-integral($J_{Ic}$ /) with other parameters($K_{Ic}$ , $G_{v}$ , and $G_{F}$ ). The change of parameter values according to the width and notch length of concrete beam specimens was also considered. The load-displacement curves are used to experimentally measure concrete fracture toughness. From the results of experiment, it is noted that the value of $GF$ and tic decreases as the notch depth increases and $G_{F}$ is less sensitive than $J_{Ic}$ . Therefore, the former is more appropriate to use as the concrete fracture toughness parameter. The values of $v_{v}$ and $J_{Ic}$ increase when the width of concrete specimens increase from 75 mm to 150 mm. Therefore, the effects of specimen width need to be considered in determining the concrete fracture toughness.

Evaluation of Fracture Toughness for Steel Fiber Reinforced High Strength Concrete by Non-linear Fracture Mechanics Parameter(J-integral) (비선형 파괴역학 파라메터(J-적분)에 의한 강섬유보강 고강도콘크리트의 파괴인성 평가)

  • Koo, Bong Kuen;Kim, Tae Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.25-37
    • /
    • 1993
  • This paper describes the use of the J-integral, a one parameter of the non-linear fracture mechanics(NLFM), as a means to measure toughness of steel fiber reinforced concrete. This parameter can be conveniently evaluated from experimentally determined load-deflection curves from flexural tests when a maximum-load failure criterion is employed. And, for high strength concrete which was reinforced steel fiber, with two different fiber length in the form of notched beams, were tested under 3-point bending, and $J_{IC}$, as well as the linear elastic fracture mechanics(LEFM) parameters $K_{IC}$ and $G_{IC}$ were evaluated. The results suggest that $J_{IC}$ is a promising fracture criterion for all of these. while $K_{IC}$(or $G_{IC}$) almost certainly are not. Also it was found that a fiber addition of less than 0.5% did not improve the fracture toughness of the high strength concrete. However, at more than 1.0% in fiber contents, $J_{IC}$ showed significant increases. reflecting the changed character of the concrete; $K_{IC}$ and $G_{IC}$ did not.

  • PDF

A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites (알루미나 나노섬유와 분말이 첨가된 에폭시 복합재료의 열전도도 특성 및 파괴인성에 대한 연구)

  • Choi, Jeong-Ran;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • In this work, the effect of alumina nanofibers on thermal conductivity and fracture toughness of alumina nanofibers and powder filled epoxy (EP) composites were investigated with varying alumina nanofiber content from 20 to 100 phr. Thermal conductivity was tested using a laser flash analysis (LFA). The fracture toughness of the composites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The mophologies were observed by scanning electron microscopy (SEM). From the results, it was found that the thermal conductivity was enhanced with increasing alumina nanofiber content, which played a key factor to determine the thermal conductivity. The $K_{IC}$ value was increased with increasing alumina nanofiber content, whereas the value decreased above 40 phr alumina nanofiber content. This was probably considered that the alumina nanofiber entangled each other in EP due to an excess of alumina nanofibers.

The Toughening Mechanism of the Rubber-Modified Epoxy Resin (고무 변성 에폭시의 고인화 메카니즘)

  • 이덕보;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • In this work, we investigate the toughening mechanism of the rubber-modified epoxy resin. The fracture toughness($K_{IC}$) is measured using CT specimens for three kinds of rubber-modified epoxy resin with different rubber content. The damage zone and rubber particles around a crack tip of a damaged specimen just before fracture are observed by a polarization microscope and an atomic force microscope(AFM). Both the fracture energy($G_{IC}$) and the size of damage zone increase with the rubber content below l5wt%. The size of the rubber particles can be qualitatively correlated with the $G_{IC}$ and the size of damage zone. The cavitation of the rubber particles inside the damage zone is observed, which is expected to be main toughening mechanism by rubber particles. the stress which causes the cavitation of rubber particles is estimated by the Dugdale model.

  • PDF

Prediction of fracture toughness for turbine rotor steels from their mechanical test results (터어빈 로우터용 강에 대한 기계적 성질로부터 파괴인성치$K_IC$예측에 관한 연구)

  • 이학문;정순호;장윤석;이치우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.717-724
    • /
    • 1987
  • Mechanical properties tests and fracture toughness tests of turbine rotors were performed in the wide range of temperatures, -150.deg.C-+150.deg.C, and fracture toughness values from above tests were compared with the estimated values from mechanical properties at lower and upper shelf temperatures and FATT. The relations between mechanical properties and $K_{IC}$ properties proposed by Rolfe and Begley were reviewed and confirmed through these experimental results. On the fracture surfaces of some specimens which were satisfied with the Ikeda's $K_{IC}$ criterion micro dimple zone was detected at the rear of fatigue crack zone and it was confirmed that these specimens were not satisfied with the thickness requirement of ASTM E 399.E 399.

Fracture toughness and AE Characteristics of Engineering plastic according to thickness (두께변화에 따른 엔지니어링 플라스틱의 파괴인성과 AE특성)

  • 남기우;김선진;안병현
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.51-57
    • /
    • 1996
  • A standard method for the evalution of the fracture toughness of the high polymer materials has not been fully developed in comparison with that for metallic materials, and has not yet established. In this paper, fracture toughness tests using polycarbonate specimens were carried out. The fracture thughness tests using polycabonate specimens were carried out. The fracture toughness of commercial polycarbonate were dependent on the specimen thickness. The specimen thickness is necessary above 8mm to obtain the valid $K_{IC}$. A cumulative counts were slightly dependent on specimen thickness.

  • PDF

A Study on High Temperature Fracture Toughness Characterisitics of Spring Steel by Compressive Residual Stress (압축잔류응력이 스프링강(SUP-9)의 고온파괴인성에 미치는 영향에 관한 연구)

  • Jung, Jae-Wook;Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.314-319
    • /
    • 2004
  • High temperature fracture toughness characteristics of shot peened spring steel(SUP-9), which is used for automobile suspension system and railroad, was investigated in this paper. Fracture tougness test for room temperature, $100^{\circ}C$ , and $200^{\circ}C$ were evaluated by material test system(MTS). The experimental results show that the fracture toughness was improved by peened and unpeened. The fracture toughness for high temperature were also improved by peened and unpeened.

  • PDF

Prediction of Elastic-Plastic Fracture Toughness for Metallic Material using Finite Element Method (유한요소법에 의한 금속재료의 탄소성파괴인성 예측)

  • Sun Dong-Ju;Park Myung-kyun;Bahk Sae-Man;Choi Young-Taek
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.95-100
    • /
    • 1997
  • In order to predict the elastic-plastic fracture toughness for metallic materials, Finite Element Method(FEM) was used for analysis of compact tension specimen. ASTM E399 test procedure was adopted for simulation of FEM. The Load-Crack Mouth Opening Displacement curve obtained from this analysis was used to detect the crack initiation point and determine the elastic-plastic fracture toughness $J_{IC}$. In order to prove the results, they were compared with the results from previous experiments and they agree with experimental results.

  • PDF

The Modification of Epoxy Resins with Liquid Rubbers (Liquid Rubber를 이용한 Epoxy Resin의 개질)

  • Choi, Sei-Young;Kim, Young-Jun;Yun, Ju-Ho
    • Elastomers and Composites
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 1996
  • In order to Improve the fracture toughness of epoxy resin system, liquid chloroprene rubber(LCR) and liquid butadiene rubber (LBR) which have hydroxy group were used in the brittle epoxy system. Mechanical and toughness characterization of the modified epoxy resins were investigated as a function of liquid rubbers content. Epoxy resins modified with both of the liquid rubbers showed complete phase-separation microstructure : In all of the LCR content, it was observed that the domain size of LCR dispersed in the epoxy matrix ranging from $2{\mu}m\;to\;5{\mu}m$. It was found that fracture toughness, $K_{ic}$, of the modified LCR system was enhanced continuously as increasing LCR content. However around 10phr of LBR system showed maximum fracture toughness. Specifically, when BPA add to the modified LCR system, thermal and mechanical properties increased than neat epoxy. At the same time, fracture toughness was enhanced.

  • PDF

Measurement of Mode I Fracture Toughness of Rocks with Temperature and Moisture Conditions at Low Temperature (저온하에서의 온도 및 함수 조건에 따른 암석의 모드 I 파괴인성 측정)

  • Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.352-361
    • /
    • 2001
  • Mode I fracture toughness ( $K_{IC}$) of the frozen rocks and that of the frozen-thawed rocks were obtained by using BDT and CCNBD specimens. The test temperatures ranged from +$25^{\circ}C$ to -16$0^{\circ}C$. Wet and air-dry specimens of granite and sandstone were used in order to investigate the effect of water and porosity on fracture toughness. The SEM images of the frozen-thawed rocks were also analysed to check the density of thermal cracks. The $K_{IC}$ of the frozen rocks increased as the test temperature went down. The rate of increase was higher in wet condition than in dry condition and the rate of increase for wet granite was higher than that for wet sandstone. The $K_{IC}$ of the frozen-thawed rocks varied within 15% from the $K_{IC}$ of the rocks at room temperature. After one freeze-thaw process, thermal crack occurred in granite but no thermal cracks occurred in sandstone. And the crack density was increased as the temperature went down.n.

  • PDF