• Title/Summary/Keyword: fracture tests

Search Result 1,286, Processing Time 0.024 seconds

Mechanical Anisotropy of Pocheon Granite under Uniaxial Compression (일축압축하에서 포천화강암의 역학적 이방성)

  • Park Deok-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.337-348
    • /
    • 2005
  • Jurassic granite from Pocheon area were tested to investigate the effect of microcracks on mechanical properties of the granite. Three oriented core specimens were used for uniaxial compressive tests and each core specimen are perpendicular to the axes'R'(rift plane),'c'(grain plane) and'H'(hardway plane), respectively Among vacious elastic constants, the variation of Poisson's ratio as function of the directions was examined. From the related chart between ratio of failure strength and Poisson's ratio, H-specimen shows the highest range in Poisson's ratio and Poisson's ratio decreases in the order of C-specimen and R-specimen. The curve pattern is nearly linear in stage $I\simIII$ but the slope increases abruptly in stage H-3. As shown in the related chart, diverging point of a curve is formed when ratio of failure strength is $0.92\sim0.96$ Stage IV -3 is out of elastic region. The behaviour of rock in the four fracturing stages was analyzed in term of the stress-volumetric strain me. From the stress increment-volumetric strain equations governing the behaviour of rock, characteristic material constants, a, n, Q, m and $\varepsilon_v^{mcf}$, were determined. Among these, inherent microcrack porosity$(a, 10^{-3})$ and compaction exponent(n) in the microcrack closure region(stage I ) show an order of $a^R(3.82)>a^G(3.38)>a^H(2.32)\;and\;n^R(3.69)>n^G(2.79)>n^H(1.99)4, respectively. Especially, critical volumetric microcrack strain($\varepsilon_v^{mcf}$) in the stage W is highest in the H-specimen, normal to the hardway plane. These results indicate a strong correlation between two major sets of microcracks and mechanical properties such as Poisson's ratio and material constants. Correlation of strength anisotropy with microcrack orientation can have important application in rock fracture studies.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

The Design of Mobile Medical Image Communication System based on CDMA 1X-EVDO for Emergency Care (CDMA2000 1X-EVDO망을 이용한 이동형 응급 의료영상 전송시스템의 설계)

  • Kang, Won-Suk;Yong, Kun-Ho;Jang, Bong-Mun;Namkoong, Wook;Jung, Hai-Jo;Yoo, Sun-Kook;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.53-55
    • /
    • 2004
  • In emergency cases, such as the severe trauma involving the fracture of skull, spine, or cervical bone, from auto accident or a fall, and/or pneumothorax which can not be diagnosed exactly by the eye examination, it is necessary the radiological examination during transferring to the hospital for emergency care. The aim of this study was to design and evaluate the prototype of mobile medical image communication system based on CDMA 1X EVDO. The system consists of a laptop computer used as a transmit DICOM client, linked with cellular phone which support to the CDMA 1X EVDO communication service, and a receiving DICOM server installed in the hospital. The DR images were stored with DICOM format in the storage of transmit client. Those images were compressed into JPEG2000 format and transmitted from transmit client to the receiving server. All of those images were progressively transmitted to the receiving server and displayed on the server monitor. To evaluate the image quality, PSNR of compressed image was measured. Also, several field tests had been performed using commercial CDMA2000 1X-EVDO reverse link with the TCP/IP data segments. The test had been taken under several velocity of vehicle in seoul areas.

  • PDF

Study on Image Quality Assessment in Whole Body Bone Scan (전신 뼈검사에서의 영상 평가 연구)

  • Kwon, Oh Jun;Hur, Jae;Lee, Han Wool;Kim, Joo Yeon;Park, Min Soo;Roo, Dong Ook;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • Purpose Whole body bone scan, which makes up a largest percentage of nuclear medicine tests, has high sensitivity and resolution about bone lesion like osteomyelitis, fracture and the early detection of primary cancer. However, any standard for valuation has not yet been created except minimum factor. Therefore, in this study, we will analysis the method which show a quantitative evaluation index in whole body bone scan. Materials and Methods This study is conducted among 30 call patients, who visited the hospital from April to September 2014 with no special point of view about bone lesion, using GE INFINIA equipment. Enumerated data is measured mainly with patient's whole body count and lumbar vertabrae, and the things which include CNR (Contrast to Noise ratio), SNR (Signal to Noise ratio) are calculated according to the mean value signal and standard deviation of each lumbar vertabrae. In addition, the numerical value with the abdominal thickness is compared to each value by the change of scan speed and tissue equivalent material throughout the phantom examination, and compared with 1hours deleyed value. Completely, on the scale of ten, 2 reading doctors and 5 skilled radiologists with 5-years experience analysis the correlation between visual analysis with blind test and quantitative calculation. Results The whole body count and interest region count of patients have no significant correlation with visual analysis value throughout the blind test(P<0.05). There is definite correlation among CNR and SNR. In phantom examination, Value of the change was caused by the thickness of the abdomen and the scan speed. And The poor value of the image in the subject as a delay test patient could be confirmed that the increase tendency. Conclusion Now, a standard for valuation has not been created in whole body bone scan except minimum factor. In this study, we can verify the significant correlation with blind test using CNR and SNR and also assure that the scan speed is a important factor to influence the imagine quality from the value. It is possible to be some limit depending on the physiology function and fluid intake of patient even if we progress the evaluation in same condition include same injection amount, same scan speed and so on. However, that we prove the significant evaluation index by presenting quantitative calculation objectively could be considered academic value.

  • PDF

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.

Prevalence of Tarsal Coalition in the Korean Population: A Single Institution-Based Study (한국인의 족근골 유합의 유병률: 병원 내원 환자에 대한 연구)

  • Kim, Tae Yong;Yoon, So Hee;Ko, Jung Hoon;Lee, Tae Ho;Yi, Seung Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.324-330
    • /
    • 2020
  • Purpose: Korean studies on the prevalence of a tarsal coalition are quite rare, and there are very few reports on the prevalence of multiple tarsal coalitions among adults in the foreign literature. Therefore, this study examined the characteristics and prevalence of tarsal coalition in the Korean population based on imaging tests. Materials and Methods: The prevalence of tarsal coalition and its anatomical location and histological classification were reviewed retrospectively among 4,711 patients (4,454 males and 257 females) with an ankle sprain or ankle fracture who underwent foot and ankle computed tomography and magnetic resonance imaging between March 2009 and February 2019 at the authors' institution. Results: Over a period of 10 years, 78 patients (1.7%) had a tarsal coalition, among whom 53 patients (67.9%) had an isolated tarsal coalition and 25 patients (32.1%) had multiple tarsal coalitions. Regarding the anatomical location, a talocalcaneal coalition was the most common type in both isolated (31 patients, 37 cases [62.7%]) and multiple (22 patients, 23 cases [45.1%]) tarsal coalitions. In the isolated coalition group, the second-most common type was calcaneonavicular coalition (10 patients, 16.9%), followed by naviculocuneiform (nine patients, 15.3%) and cuboidonavicular coalitions (three patients, 5.1%). In the multiple coalition group, the second-most common coalition type was calcaneonavicular coalition (14 patients, 14 cases [27.5%]), followed by talonavicular coalition (six patients, six cases [11.8%]). From a total of 60 cases of talocalcaneal coalition, 24 cases (40.0%) were in the posterior facet, 18 cases (30.0%) in the middle facet, and four cases (6.7%) in the anterior facet. Regarding the histological classification, cartilaginous coalition was the most common in both single (32 patients, 35 cases [59.3%]) and multiple (20 patients, 37 cases [72.5%]) coalition groups. Conclusion: The present study found that talocalcaneal coalition was the most common type of tarsal coalition. In contrast to previous reports that a talocalcaneal coalition generally occurs in the middle facet, it was usually observed in the posterior facet in the present study. In addition, although multiple tarsal coalitions have been reported to be quite rare, this study confirmed that they are not rare and can occur in a range of patterns.