• 제목/요약/키워드: fracture mechanism

검색결과 703건 처리시간 0.026초

복합적층판의 직병렬 유공 접합부의 파손연구 (A Study on the Failure Characteristic of Laminated Composites Joint Containing Two Holes in Series or Parallel)

  • 송관형
    • 대한조선학회논문집
    • /
    • 제32권2호
    • /
    • pp.93-102
    • /
    • 1995
  • 2개의 직렬 흑은 병렬로 원공이 배치된 $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ 복합적층판에 대하여 기계적 접합부의 강도 및 파손양상을 알아보고, 기하학적 형상을 변화시키면서, 파손강도 및 파손모드에 대하여 FEM으로 예측한 값과 실험결과로 얻은 자료, 그리고 실험식으로 계산한 값을 각각 비교 검토했다. 두 직렬 원공이 있는 적층판의 기계적 접합에 있어, $W/d{\geq}4.0$$E/d{\geq}3.0$의 기하학적 범위에서 Full bearing 강도를 얻을 수 있다. 두개의 병렬 및 직렬원공인 경우, $G_h{\geq}3.0d$(원공간의 수평거리가 직경의 3배 이상)이고, $G_v{\geq}3.0d$(원공간의 수직거리가 직경의 3배 이상)이면 원공간의 상호간섭효과는 작게 되어, 각각의 원공들을 독립적으로 취급할 수 있다. 복합재료의 특성파악에 알맞은 비파괴 시험법인 AE을 이용했고 미시적 구조를 관찰하기 위해 주사형 전자현미경(SEM)으로 파단면을 촬영하여 탐색하였다.

  • PDF

ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구 (Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe)

  • 김재성;김용;이보영
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가 (Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio)

  • 황보진;한상환;박영미
    • 콘크리트학회논문집
    • /
    • 제22권1호
    • /
    • pp.3-10
    • /
    • 2010
  • 이 연구에서는 중력 전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진성능을 평가하였다. 이를 위하여, 이 연구에서는 3층, 7층 골조를 중력하중만 고려하여 설계하고, 대상 건물에 대한 비선형 정적 푸쉬 오버 해석과 비선형 동적 해석을 수행하였다. 그리고 이 연구는 그 비선형 해석에서 중력 전단비의 차이에 따른 뚫림 전단과 파괴 메커니즘을 예측할 수 있도록 제안한 슬래브-기둥 접합부 모델을 사용하였다. 이 연구 결과에 따르면 중력 전단비가 골조의 내진성능에 큰 영향을 미치는 것으로 나타났다. 특히 중력 전단비가 커짐에 따라 골조 접합부의 파괴가 취성적인 파괴를 나타내어 내진 성능이 떨어지는 것으로 나타났다.

음향방출기법을 이용한 혼입되는 섬유의 종류에 따른 SHCC의 직접인장거동특성 평가 (Evaluation of SHCC on Direct Tensile Load using Acoustic Emission Technique)

  • 김윤수;윤현도;전에스더;박완신
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.177-180
    • /
    • 2008
  • SHCC는 섬유와 시멘트 메트릭스 계면의 부착작용으로 인해 높은 에너지 흡수능력을 보여준다. 서로 다른 종류의 섬유로 보강된 SHCC는 혼입되는 섬유자체가 가지는 재료적 특성에 의해 서로 다른 특성을 나타내기 때문에 시멘트 메트릭스와 혼입되는 섬유의 상호작용에 의한 손상진전에 따른 미세적 파괴 메카니즘에 대한 평가가 필요할 것으로 판단된다. 이에 본 연구에서는 AE기법을 사용하여 단독섬유와 하이브리드 섬유를 혼입한 시멘트 복합체의 직접인장특성을 평가하고자 하였다. 이러한 목적으로 본 실험에서는 PET2.0%, PET1.5%+PE0.5%, PET1.5%+PVA0.5%의 세 종류의 단독섬유 및 하이브리드 섬유를 혼입하여 실험을 실시하였으며, 실험에서 나타난 AE신호와 직접인장실험결과를 상호비교 분석하였다. 직접인장실험결과, 같은 혼입율에서 PET만을 단독혼입한 시험체에 비해 PET-PE시험체에서 최대 강도에서 약 2.7배 높게 나타났으며. 손상진전에 따른 AE신호결과, 혼입되는 섬유의 재료적 특성에 따라 AE이벤트수와 누적에너지에서 상이한 특성을 나타내었다.

  • PDF

Mg-Zn-Mn-(Ca)합금의 크리이프 변형거동에 관한 연구 (A Study on the Creep Deformation Behavior of Mg-Zn-Mn-(Ca) Alloys)

  • 강대민;구양;심성보
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.73-78
    • /
    • 2006
  • In this paper, creep tests of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys, which were casted by mold with Mg-3%Zn-1%Mn and Mg-3%Zn-1%Mn-0.2%Ca, were done under the temperature range of 473-573K and the stress range of 23.42-78.00Mpa. The activation energies and the stress exponents were measured to investigate the creep plastic deformation of those alloys, and the rupture lifes of Mg-Zn-Mn alloy were also measured to investigate the fracture behavior. From the results, the activation energy of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys under the temperature range of 473-493K were measured as 149.87, 145.98KJ/mol, respectively, and the stress exponent were measured as 5.13, 6.06 respectively. Also the activation energies Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys under the temperature range of 553-573K were obtained as 134.41, 129.22KJ/mol, respectively, and tress exponent were obtained as 3.48, 4.63, respectively. Finally stress dependence of rupture life and the activation energy of rupture life of Mg-Zn-Mn under the temperature range of 473-493K was measured as 8.05, 170.0(KJ/mol), respectively, which were a little higher than the results of steady state creep.

강우에 대한 지하수위 반응양상 비교분석 : 강원도 원주지역과 경기도 의왕지역 (A comparative study on characteristics of waterlevel responses to rainfall in the two aquifer systems)

  • 이진용;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제7권1호
    • /
    • pp.3-14
    • /
    • 2002
  • 강원도 원주지역 암반대수층과 경기도 의왕지역 천층대수층에서 측정한 연속지하수위자료에 대해 시계열분석을 하였다. 연구에 사용한 시계열특성함수는 자기상관함수, 스펙트럼밀도함수, 그리고 상호상관함수이다. 분석결과 강원도 원주지역의 천층대수층의 지하수위는 자기상관성이 상대적으로 작고 상부토양층을 통한 강우의 직접적 침투에 민감하고 단열암반대수층의 지하수위는 상대적으로 외부자극(강우)에 안정적인데 이는 먼 곳으로부터 단열망을 통한 자극의 전파에 기인하거나 혹은 중간에 투수성이 낮은 비풍화편마암대의 영향으로 보인다. 의왕지역의 지하수위의 시계열적 특성은 원주지역의 단열암반대수층의 그것과 유사하다. 이는 지하수위측정 지역의 지하수함양이 직접적 강우침투보다는 광역적 함양과 그 스트레스의 전파에 기인하는 것으로 판단된다. 본 연구에서는 강우와 지하수위와의 시계열 분석이 지하수 함양기작 이해에 어떻게 이용되는지를 보여주었다.

탄화규소계 세라믹스에서 미끄럼시의 마모 및 마모천이에 미치는 계면강도의 영향 (Effects of Interface Boundary Strength on Wear and Wear Transition during Sliding in Silicon Carbide Ceramics)

  • 김동진;박성길;류현;엄창도;조성재;김석삼
    • Tribology and Lubricants
    • /
    • 제11권4호
    • /
    • pp.21-27
    • /
    • 1995
  • The effects of interface boundary strength on wear and wear transition during sliding have been investigated in silicon carbide ceramics. Three different microstructures, i.e., solid state sintered silicon carbide, liquid phase sintered silicon carbide and liquid phase sintered silicon carbide composite reinforced with TiB$_{2}$ particulates, were designed by hot pressing. Examinations of crack patterns and fracture modes indicated that interface boundaries were relatively strong between silicon carbide grains in the solid state sintered silicon carbide, intermediate in the liquid phase sintered silicon carbide and weak between silicon carbide grains and TiB$_{2}$ particles in the composite. Wear data and examinations of worn surfaces revealed that the wear behavior of these silicon carbide ceramics could be significantly affected by the interface strength. In the solid state sintered silicon carbide, the wear occurred by a grooving process. In the liquid phase sintered silicon carbide and composite, on the other hand, an abrupt transition in wear mechanism from initial grooving to grain pull-out process occurred during the test. The transition occurred significantly earlier in the composite than in the carbide.

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.

Rapidly growing pediatric trampoline-related injuries in Korea: a 10-year single center retrospective study

  • Cho, Min Jeng;Kim, Jihoon;Kim, Sung Jeep;Kyoung, Kyu Hyouck;Keum, Min Ae;Park, Sung Kyun
    • Clinical and Experimental Pediatrics
    • /
    • 제62권3호
    • /
    • pp.90-94
    • /
    • 2019
  • Purpose: Several published policy statements have warned against the risks associated with trampoline use and recommended safety guidelines. However, few studies have focused on trampoline-related injuries in Korea. This study aimed to assess the incidence and characteristics of pediatric trampoline-related injuries presented to Ulsan University Hospital. Methods: We retrospectively reviewed the medical records of children aged <16 years with trampoline-related injuries who visited our Emergency Department between 2008 and 2017. Results: Over the 10-year period, 178 trampoline-related injuries were reported, which represented a significant increase (P=0.016). Most (87.6%) of the injuries occurred during the last 5 study years, and a rapid increase in injuries was observed in children aged <6 years. Lower extremity injuries (62.4%) were the most common, followed by injuries of the upper extremities, head and face, and trunk, including injuries to the neck and spine. Sixty-seven children (37.6%) had fractures, and proximal tibia fractures were the most common. Fractures were significantly more common in younger children (<6 years old) than in older children (P=0.026). Conclusion: In Korea, the mechanism of trampoline injury is similar to that of injuries incurred in indoor trampoline parks but is characterized by smaller spaces and multiple users. Trampoline use and the incidence of trampoline-related injuries in children aged <6 years are increasing rapidly. Prohibiting the use of trampolines for children aged <6 years, restricting simultaneous use by multiple children, and ensuring adult supervision should be strictly emphasized. Public awareness and policy guidelines are needed to reduce the incidence of trampoline-related injuries.

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.