• Title/Summary/Keyword: fractional function

Search Result 336, Processing Time 0.029 seconds

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Effect of Carthami Semen Aquacupunture(CSA) on Mercury-Induced Alterations in Tubular Transport Function in Rabbits (홍화자약침액(紅花子藥鍼液)이 수은(水銀)에 의한 가토(家兎)의 신세뇨관(腎細尿管) 물질이동(物質移動) 변화(變化)에 미치는 영향(影響))

  • Choi, Young-gyu;Youn, Hyoun-min;Song, Choon-ho;Jang, Kyung-jeon;Abn, Chang-beohm
    • Journal of Acupuncture Research
    • /
    • v.19 no.5
    • /
    • pp.199-208
    • /
    • 2002
  • Objective : This study was undertaken to determine if Carthami Semen Aquacupunc- ture(CSA) exerts protective effect against alterations in membrane transport function rabbits with mercury chloride(HG)-induced acute renal failure. Methods : The administration of Hg at a subcutaneous single dose of 10 mg/kg caused a reduction in GFR and an increase in fractional Na excretion, indicating generation of acute renal failure. When CSA were given for 7 days prior to Hg administration, such changes were significantly attenuated. The fractional excretion of glucose and phosphate was increased in rabbits treated with Hg alone. Results : The increase in rabbits treated with Hg following CSA are significantly lower than that in animals treated with Hg alone. Uptakes of glucose and phosphate in purified isolated brush-border membrane and Na-K-ATPase activity in microsomal fraction were inhibited in rabbits treated with Hg alone. Such changes were prevented by CSA. Uptakes of organic ions, PAH and TEA, in renal cortical slices were inhibited by the administration of Hg, which was prevented by CSA. Exposure of renal cortical slices to Hg in vitro caused an increased LDH release and lipid peroxidation, which was significantly prevented by CSA extract. Conclusions : These results indicate that the administration of Hg causes impairment in reabsorption of solutes in the proximal tubule via the generation of reactive oxygen species. CSA provides the protection against the impairment in proximal reabsorption, and its effect may be resulted from its antioxidant effect.

  • PDF

Indocyanine green excretion test and changes of plasma enzyme activities in Korean native cattle and dairy cattle (한우 및 유우에서의 indocyanine green 배설시험 및 혈장효소 활성치의 변화)

  • Son, Min-soo;Kim, Cheol-ho;Choi, IL-kwan;Kim, Jin-gu;Hur, Ju-hyeong;Kang, Chung-boo
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.677-681
    • /
    • 1992
  • This experiment was carried out to establish a proper method of indocyanine green(ICG) excrection test for a applicable liver function test in three Korean native cattle average weighing about 450kg and dairy cattle parity of 3~5. The results obtained the half life($T^1/_2$), fractional clearance rate(KICG), retention rate and plasma enzyme activities before or after injection of ICG were as follows. 1. The maximum absorbance of ICG in plasma was at 805nm. 2. Average half life and fractional clearance rate following the injection of ICG 0.25mg/kg body weight were $5.53{\pm}1.27$ minute and $0.131{\pm}0.031$/minute in Korean native cattle, $4.55{\pm}0.68$ minute and $0.156{\pm}0.031$/minute in dairy cattle, respectively. The ICG removal rate was exponentially liner for the first 15 minutes after injection both of Korean native cattle and dairy cattle. 3. Average plasma retention rate when 10, 15, 30 minutes after injection was $35.7{\pm}13.9$, $23.2{\pm}7.1$, $10.8{\pm}3.5%$ in Korean native cattle, $26.8{\pm}3.3$, $14.2{\pm}1.2$, $5.5{\pm}2.2%$ in dairy cattle, respectively. 4. Plasma enzyme activities(AST, ALT, r-GTP) were no variation among the before, during and after injection of ICG. From these results, ICG excretion test to cattle is applicable to evaluation of liver funtion in both clinical and research, and adopted the 15 minutes plasma sample as the sample taken at the ideal time for comparative purposes.

  • PDF

Analysis on the Dynamic Characteristics of a Rubber Mount Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무 마운트의 동특성 해석)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • In this paper, a statistical calibration method is proposed in order to identify the variability of complex modulus for a rubber material due to operational temperature and experimental/model errors. To describe temperature- and frequency-dependent material properties, a fractional derivative model and a shift factor relationship are used. A likelihood function is defined as a product of the probability density functions where experimental values lie on the model. The variation of the fractional derivative model parameters is obtained by maximizing the likelihood function. Using the proposed method, the variability of a synthetic rubber material is estimated and applied to a rubber mount problem. The dynamic characteristics of the rubber mount are calculated using a finite element model of which material properties are sampled from Monte Carlo simulation. The calculated dynamic stiffnesses show very large variation.

GPU-based modeling and rendering techniques of 3D clouds using procedural functions (절차적 함수를 이용한 GPU기반 실시간 3D구름 모델링 및 렌더링 기법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.416-422
    • /
    • 2019
  • This paper proposes a GPU-based modeling and rendering of 3D clouds using procedural functions. The formation of clouds is based on modified noise function made with fbm(Fractional Brownian Motion). Those noise values turn into densities of droplets of liquid water, which is a critical parameter for forming the three different types of clouds. At the rendering stage, the algorithm applies the ray marching technique to decide the colors of cloud using density values obtained from the noise function. In this process, all lighting attenuation and scattering are calculated by physically based manner. Once we have the clouds, they are blended on the sky, which is also rendered physically. We also make the clouds moving in the sky by the wind force. All algorithms are implemented and tested on GPU using GLSL.

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • 이재국;김진우;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.129-137
    • /
    • 2004
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot sports in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

  • PDF

𝜓-COUPLED FIXED POINT THEOREM VIA SIMULATION FUNCTIONS IN COMPLETE PARTIALLY ORDERED METRIC SPACE AND ITS APPLICATIONS

  • Das, Anupam;Hazarika, Bipan;Nashine, Hemant Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.273-288
    • /
    • 2021
  • We proposed to give some new 𝜓-coupled fixed point theorems using simulation function coupled with other control functions in a complete partially ordered metric space which includes many related results. Further we prove the existence of solution of a fractional integral equation by using this fixed point theorem and explain it with the help of an example.

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.447-462
    • /
    • 2021
  • In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.