Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.4.447

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii  

Ezzat, Magdy A. (Department of Mathematics, College of Science and Arts, Qassim University)
Publication Information
Steel and Composite Structures / v.38, no.4, 2021 , pp. 447-462 More about this Journal
Abstract
In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.
Keywords
thermoelectric materials; fractional order theory; variable of thermal conductivity; variable $Lam{\acute{e}}{^{\prime}s}$ moduli; perturbation method; numerical results;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2),177-186. https://doi.org/10.12989/scs.2017.25.2.177.   DOI
2 Ezzat, M.A. and El-Karamany, A.S. (2002), "The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(11), 1275-1284. DOI: 10.1016/S0020-7225(01)00099-4   DOI
3 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A. (2016), "Electro-thermoelasticity theory with memory-dependent derivative heat transfer", Int. J. Eng. Sci., 99(2), 22-38. DOI:10.1016/j.ijengsci.2015.10.01.   DOI
4 Ezzat, M.A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys. 88(1), 35-48. DOI:10.1139/P09-100.   DOI
5 Goldstein, R.J., et al. (2005), "Heat transferda review of 2002 literature", Int. J. Heat. Mass Transf., 48, 819-927. DOI: 10.1016/j.ijheatmasstransfer.2004.10.011.   DOI
6 Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elast., 2 (1),1-7. DOI:10.1007/BF00045689.   DOI
7 Hetnarski, R.B., Ignaczak J. (2000), "Nonclassical dynamical thermoelasticity", Int. J. Solids Struct., 37(1), 215-224. DOI:10.1016/S0020-7683(99)00089-X   DOI
8 Hiroshige, Y., Makoto, O., Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synthetic Metals., 157(10-12), 467-474. DOI:10.1016/j.synthmet.2007.05.003.   DOI
9 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comp. Appl. Math., 10(1), 113-132. DOI:10.1016/0377-0427(84)90075-X.   DOI
10 Hu, W., Deng, Z., Han, S. and Zhang, W. (2013), "Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs", J. Copmu. Phys., 235, 394-406.DOI:10.1016/j.jcp.2012.10.032   DOI
11 Hu, W., Ye, J. and Deng, Z. (2020a), "Internal resonance of a flexible beam in a spatial tethered system", J. Sound Vib., 475, 115286. DOI:10.1016/j.jsv.2020.115286   DOI
12 Hu, W., Xu, M., Song, J., Gao, Q. and Deng, Z. (2020b), "Coupling dynamic behaviors of flexible stretching hub-beam system", Mech. Syst. Signal Pr., 151, 107389. DOI: 10.1016/j.ymssp.2020.107389   DOI
13 Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in a transversely isotropic magnetothermoelastic with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Modell., 40(13-14), 6560-6575. DOI: 10.1016/j.apm.2016.01.061.   DOI
14 Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to Ramp type heat", Mech. Adv. Mat. Struct., 24(8), 625-635. DOI: 10.1080/15376494.2016.1196769.   DOI
15 Hu, W., Wang, Z., Zhao, Y. and Deng, Z. (2020c), "Symmetry breaking of infinite-dimensional dynamic system", Appl. Math. Let., 103, 106207. DOI: 10.1016/j.aml.2019.106207.   DOI
16 Hu, W., Zhang, C. and Deng, Z. (2020e), "Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs", Comm. Nonlinear Sci. Numer. Simulat., 84, 105199. DOI: 10.1016/j.cnsns.2020.105199.   DOI
17 Hu, W., Yu, L. and Deng, Z. (2020e), "Minimum control rnergy of spatial beam with assumed attitude adjustment target", Acta Mech. Solida Sin., 33(1), 51-60. DOI: 10.1007/s10338-019-00132-4.   DOI
18 Kothari, S. and Mukhopadhyay, S.A. (2011), "Problem on elastic half space under fractional order theory of thermoelasticity", J. Therm. Stress., 34, 724-739. DOI:10.1080/01495739.2010.550834.   DOI
19 Hicks L D, Dresselhaus, M.S. (1993), "Thermoelectric figure of merit of a one dimensional conductor", Phys. Rev. B., 47,16631-16634.   DOI
20 Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.   DOI
21 Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.   DOI
22 Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic soliddue to inclined load", Steel Compos. Struct., 33(1), 955-963. https://doi.org/10.12989/scs.2019.33.1.123.
23 Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. DOI:10.1016/0022-5096(67)90024-5.   DOI
24 Lotfy, K. and Sarkar, N. (2017), "Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature", Mech. Time-Dep. Mater., 21(4), 519-534. DOI:0.1007/s11043-017-9340-5.   DOI
25 Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", CR Acad Sci. Paris, Serie II, B, 321(12), 375-480.
26 Mashat, D.S. and Zenkour, A.M. (2020), "Modified DPL Green-Naghdi theory for thermoelastic vibration of temperature-dependent nanobeams", Phys. Res., 16, 102845. DOI: 10.1016/j.rinp.2019.102845.   DOI
27 Morelli, D.T. (1997), Thermoelectric devices, (Eds., G.L. Trigg, E.H. Immergut), Encyclopedia of Applied Physics, 21, Wiley-VCH, New York.
28 Nolas, G.N., Sharp, J. and Goldsmid, H.J. (2001), Thermoelectrics: Basic Principles and New Materials Developments, Spinger, NewYork.
29 Mukhopadhyay, S. and Kumar, R. (2009), "Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity", J. Therm. Stress., 32(4), 341-360. DOI:10.1080/01495730802637183.   DOI
30 Nayfeh, A.H. (1973), Perturbation Methods, Wiley Interscience, New York.
31 Othman, M.I., Ezzat, M.A., Zaki, S.A. and El-Karamany, A.S. (2002), "Generalized thermo-viscoelastic plane waves with two relaxation times", Int. J. Eng. Sci., 40(12), 1329-1347. DOI:10.1016/S0020-7225(02)00023-X.   DOI
32 Povstenko, Y.Z. (2009), "Thermoelasticity that uses fractional heat conduction equation", J. Math. Sci., 162(2), 296-305. DOI:10.1007/s10958-009-9636-3.   DOI
33 Rowe, D.M. (1995), "Handbook of Thermoelectrics", CRC Press.
34 Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", An. St. Univ. Ovidius Constanta, 22(2), 151-175. 10.2478/auom-2014-0040.   DOI
35 Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 191(3), 231-251. DOI:10.1017/S0022112079000136.   DOI
36 Sherief, H.H. (1986), "Fundamental solution of generalized thermoelastic problem for short times", J. Therm. Stress., 9(2),151-164. DOI:10.1080/01495738608961894.   DOI
37 Sherief, H., El-Sayed, A.M.A. and Abd El-Latief, A.M. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. DOI:10.1016/j.ijsolstr.2009.09.034.   DOI
38 Sherief, H.H. and Hussein, E.M. (2018), "Contour integration solution for a thermoelastic problem of a spherical cavity", Appl. Math. Comput., 320, 557-571. DOI: 10.1016/j.amc.2017.10.024.   DOI
39 Sherief, H. and Abd El-Latief, A.M. (2013), "Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity", Int. J. Mech. Sci., 74, 185-189. DOI:10.1016/j.ijmecsci.2013.05.016.   DOI
40 Sherief, H. and Abd El-Latief, A.M. (2016), "Modeling of variable Lame's Modulii for a FGM generalized thermoelastic half Space", Lat. Am. J. Solid Struct., 13 (4), 715-730. DOI:10.1590/1679-78252086.   DOI
41 Sobhy, M. and Zenkour, M.A. (2020), "A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations", Mech. Adv. Mat Struct., 27(10), 816-830. DOI:10.1080/15376494.2018.1499986.   DOI
42 Tiwari, R. and Mukhopadhyay, S. (2018), "Analysis of wave propagation in the presence of a continuous line heat source under heat transfer with memory dependent derivatives", Math. Mech. Solids, 23(5), 820-834. DOI:10.1177/1081286517692020.   DOI
43 Tritt, T.M. (2000), "Semiconductors and semimetals, recent trends in thermoelectric materials research", Academic Press, San Diego.
44 Tumanski S. (1999), "Nondestructive testing of the stress effects in electrical steel by magnetovision method", Proceedings of the International symposium on non-linear electromagnetic systems, ISEM '99 conference, May 10, Pavia, Italy.
45 Xue, Z.N., Chen, Z.T. and Tian, X.G. (2018), "Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model", Eng. Frac. Mech., 200, 479-498. DOI:10.1016/j.engfracmech.2018.08.018.   DOI
46 Zenkour, A.M. (2017),"Bending analysis of piezoelectric exponentially graded fiber-reinforced composite cylinders in hygrothermal environments", Int. J. Mech. Mat. Des., 13, 515-529. DOI: 10.1007/s10999-016-9351-4.   DOI
47 Yu, YJ., Tian, X.G. and Tian, J.L. (2013), "Fractional order generalized electro-magneto-thermo-elasticity", Eur. J. Mech., A/Solids, 42,188-202. DOI:10.1016/j.euromechsol.2013.05.006.   DOI
48 Yu, Y.J., Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81(3-4), 123-134. DOI:10.1016/j.ijengsci.2014.04.014.   DOI
49 Yu, Y.J. and Deng, Z.C. (2020), "New insights on microscale transient thermoelastic responses for metals with electron-lattice coupling mechanism", Euro. J. Mech. Solids, 80, 103887. DOI:10.1016/j.euromechsol.2019.103887.   DOI
50 Zenkour, A.M. and Abouelregal, A. (2019),"Thermoelastic vibration of temperature-dependent nanobeams due to rectified sine wave heating-A state space approach", J. Appl. Compu. Mech., 5(2), 299-310. DOI:0.22055/jacm.2018.26311.1323.   DOI
51 Zenkour, A.M. and Alghanmi, R.A. (2019), "Bending of exponentially graded plates integrated with piezoelectric fiber-reinforced composite actuators resting on elastic foundations", Eur. J. Mech. A/Solids, 75, 461-471. DOI: 10.1016/j.euromechsol.2019.03.003.   DOI
52 Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", Mater. Sci. Eng.: B, 130 (1-3), 1-13. DOI:10.1016/j.mseb.2006.01.020.   DOI
53 Zhang, H., Xiaoyun, J. and Xiu, Y. (2018), "A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem", Appl. Math. Comput., 320, 302-318. DOI:10.1016/j.amc.2017.09.040.   DOI
54 Bagley, R. L. and Torvik, P. J. (1986), "On the fractional calculus model of viscoelastic behavior", J. Rheol., 30, 133-155. https://doi.org/10.1122/1.549887.   DOI
55 Biswas, S. (2019), "Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field", Mech. Based Des. Struct. Mach., 47(3), 302-318. DOI:10.1080/15397734.2018.1548968.   DOI
56 Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Mech. Tech. Phys., 27(3), 240-253. DOI:10.1063/1.1722351.   DOI
57 Bo, Y., Xiaoyun, J. and Huanying, X. (2015), "A novel compact numerical method for solving the two dimensional non-linear fractional reaction-subdiffusion equation", Num. Algor., 68(4), 923-950. DOI:10.1007/s11075-014-9877-1   DOI
58 Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. DOI:10.1115/1.3098984   DOI
59 Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Expr., 2, 015006. DOI:10.1088/2631-8695/ab638c.   DOI
60 Durbin, F. (1973), "Numerical inversion of Laplace transforms: an effective improvement of Dubner and Abate's method", Comput. J., 17(4), 371-376. DOI: 10.1093/comjnl/17.4.371.   DOI
61 Ezzat, M.A. (2011), "Thermoelectric MHD with modified Fourier's law", Int. J. Therm. Sci., 50(4), 449-455. DOI:10.1016/j.ijthermalsci.2010.11.005.   DOI
62 Ezzat, M.A. and El-Bary, A.A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst. 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707.   DOI