DOI QR코드

DOI QR Code

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik (Department of Marine Engineering Operations, Yildiz Campus) ;
  • Akbarov, Surkay D. (Department of Mechanical Engineering, Yildiz Technical University, Yildiz Campus)
  • Received : 2018.12.10
  • Accepted : 2019.04.18
  • Published : 2019.09.10

Abstract

The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Keywords

References

  1. Akbarov S.D. (2014), "Axisymmetric time-harmonic Lamb's problem for a system comprising a viscoelastic layer covering a viscoelastic half-space", Mech. Time-Depend. Mater, 18, 153-178. https://doi.org/10.1007/s11043-013-9220-6.
  2. Akbarov S.D. (2015), Dynamics of Pre-Strained Bi-Material Elastic Systems: Linearized Three-Dimensional Approach, Springer, Heideiberg, New-York, Dordrecht, London.
  3. Akbarov S.D. and Kepceler T. (2015), "On the torsional wave dispersion in a hollow sandwich circular cylinder made from viscoelastic materials", Applied Mathematical Modelling, 39, 3569-3587. https://doi.org/10.1016/j.apm.2014.11.061.
  4. Akbarov S.D., Kocal T. and Kepceler T. (2016a), "Dispersion of Axisymmetric Longitudinal waves in a bi-material compound solid cylinder made of viscoelastic materials", Computers, Materials Continua, 51(2),105-143.
  5. Akbarov S.D., Kocal T. and Kepceler T. (2016b), "On the dispersion of the axisymmetric longitudinal wave propagating in a bi-layered hollow cylinder made of viscoelastic materials", Int. J. Solids Struct., 100-101(1), 195-210. https://doi.org/10.1016/j.ijsolstr.2016.08.016
  6. Barshinger J.N. and Rose J.L. (2004), "Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material", IEEE Trans. Ultrason. Freq. Control, 51, 1574-1556. https://doi.org/10.1109/TUFFC.2004.1367496.
  7. Bartoli, I., Marzani, A., Lanza di Scalea, F. and Viola, E. (2006), "Modeling wave propagation in damped waveguides of arbitrary cross-section", J. Sound Vib. 295, 685-707. https://doi.org/10.1016/j.jsv.2006.01.021.
  8. Benjamin E.D., David O.B., Bertram J.W., Christoph, B., Simon, G., Lars, K., Maximilian, H., Thomas, S. and Johanna Vannesjo, S. and Klaas, P.P. (2016), "A Field camera for MR sequence monitoring and system analysis", Magnetic Resonance in Medicine, 75, 1831-1840. https://doi.org/10.1002/mrm.25770.
  9. Chervinko O.P. and Sevchenkov I.K. (1986), "Harmonic viscoelastic waves in a layer and in an infinite cylinder", Int. Appl. Mech., 22, 1136-1186. https://doi.org/10.1007/BF01375810.
  10. Coquin, G.A. (1964), "Attenuation of guided waves in isotropic viscoelastic materials", J. Acoust. Soc. Am., 36, 1074-1080. https://doi.org/10.1121/1.1919155.
  11. Eringen, A.C., Suhubi E.S. (1975), Elastodynamics, Finite Motion, Vol. 1; Linear theory, Vo. II, Academic Press, New York, USA.
  12. Ewing, W.M., Jazdetzky, W.S. and Press, F. (1957), Elastic Waves in Layered Media, McGraw-Hill, New York, USA.
  13. Fung, Y.C. (1965), Introduction to Solid Mechanics, Prentice-Hall, USA.
  14. Guz, A.N. (1970), "On linearized problems of elasticity theory", Soviet Applied Mechanics, Vol. 6, 109. https://doi.org/10.1007/BF00887391.
  15. Guz, A.N. (1999), Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer, Berlin, Germany.
  16. Guz, A.N. (2004), Elastic Waves in Bodies with Initial (Residual) Stresses, A.C.K. Kiev, Ukraine.
  17. Jiangong, Yu. (2011), "Viscoelastic shear horizontal wave in graded and layered plates", Int. J.Solids Struct, 48, 2361-2372. https://doi.org/10.1016/j.ijsolstr.2011.04.011.
  18. Hernando Quintanilla, F., Fan, Z., Lowe, M.J.S. and Craster, R.V. (2015), "Guided waves' dispersion curves in anisotropic viscoelastic single-and multi-layered media", Proc. R. Soc. A, 471(2183), https://doi.org/10.1098/rspa.2015.0268.
  19. Kirby, R., Zlatev, Z. and Mudge, P. (2013), "On the scattering of longitudinal elastic waves from axisymmetric defects in coated pipes", J. Sound Vib., 332, 5040-5058. https://doi.org/10.1016/j.jsv.2013.04.039.
  20. Kirby, R., Zlatev, Z. and Mudge, P. (2012), "On the scattering of torsional elastic waves from axisymmetric defects in coated pipes", J. Sound Vib., 331, 3989-4004. https://doi.org/10.1016/j.jsv.2012.04.013.
  21. Kocal, T. and Akbarov, S.D. (2017), "On the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of viscoelastic materials", Struct. Eng. Mech., 61(1), 145-165. https://doi.org/10.12989/sem.2017.61.1.143.
  22. Kolsky, H. (1963), Stress Waves in Solids, Dover Books, New-York, USA.
  23. Leonov, E., Michael, J.S.L. and Cawley, P. (2015), "Investigation of guided wave and attenuation in pipe buried in sand", J. Sound Vib., 347, 96-114. https://doi.org/10.1016/j.jsv.2015.02.036.
  24. Lowe, P.S., Sanderson, R., Boulgouris, N.V. and Gan, T.H. (2015), "Hybrid active focusing with adaptive dispersion for higher defect sensitivity in guided wave inspection of cylindrical structures", Non-Destruct. Test. Eval., http://dx.doi.org/10.1080/10589759. 2015.1093628.
  25. Lowe, P.S., Sanderson, R.M., Boulgouris, N.V., Haig, A.G. and Balachandran, W. (2016), "Inspection of cylindrical structures using the first longitudinal guided wave mode in isolation for higher flaw sensitivity", IEEE Sensors J., 16, 706-714. https://doi.org/10.1109/JSEN.2015.2487602.
  26. Mace, B.R. and Manconi, E. (2008), "Modelling wave propagation in two-dimensional structures using finite element analysis", J. Sound. Vibr. 318, 884-902. https://doi.org/10.1016/j.jsv.2008.04.039.
  27. Manconi, E. and Mace, B.R. (2009), "Wave characterization of cylindrical and curved panels from finite element analysis", J. Acoust. Soc. Am., 125, 154-163. https://doi.org/10.1121/1.3021418.
  28. Manconi, E. and Sorokin, S. (2013), "On the effect of damping on dispersion curves in plates", Int. J. Solids Struct., 50, 1966-1973. https://doi.org/10.1016/j.ijsolstr.2013.02.016.
  29. Mazotti, M., Marzani, A., Bartoli, I. and Viola, E. (2012), "Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method", Int. J. Solids Struct, 49, 2359-2372. https://doi.org/10.1016/j.ijsolstr.2012.04.041.
  30. Meral, C., Royston, T. and Magin, R.L. (2009), "Surface response of a fractional order viscoelastic halfspace to surface and subsurface sources", J. Acoust. Soc. Am., 126, 3278-3285. https://doi.org/10.1121/1.3242351.
  31. Meral, C., Royston, T. and Magin, R.L. (2010), "Rayleigh-Lamb wave propagation on a fractional order viscoelastic plate", J. Acoust. Soc. Am., 129(2), 1036-1045. https://doi.org/10.1121/1.3531936.
  32. Meshkov, S.I. and Rossikhin, Y.A. (1968), "Propagation of acoustic waves in a hereditary elastic medium", J. Appl. Mech. Technical Phys., 9(5), 589-592, https://doi.org/10.1007/BF02614765.
  33. Nishido, H., Takashina, S., Uchida, F., Takemoto, M. and Ono, K. (2001), "Modal analysis of hollow cylindrical guided waves and applications", Jpn. J. Appl. Phys., 40, 364-370. https://doi.org/10.1143/JJAP.40.364.
  34. Rabotnov, Y.N. (1980), Elements of Hereditary Solid Mechanics, Mir, Moscow, Russia.
  35. Rossikhin, Y.A. (2010), "Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids", Appl. Mech. Rev., 63(1), https://doi.org/10.1115/1.4000246.
  36. Rossikhin, Y.A. and Shitikova, M.V. (1997), "Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids", Appl. Mech. Rev., 50(1), 15-67. https://doi.org/10.1115/1.3101682.
  37. Rossikhin, Y.A. and Shitikova, M.V. (2015), "Features of fractional operators involving fractional derivatives and their applications to the problems of mechanics of solids", Fractional calculus: History, Theory and Applications, Nova Science Publishers, New York, 165-226.
  38. Rose, J.L. (2004), Ultrasonic Waves in Solid Media, Cambridge University Press, United Kingdom.
  39. Sawicki, J.T. and Padovan, J. (1999), "Frequency driven phasic shifting and elastic-hysteretic portioning properties of fractional mechanical system representation schemes", J. Franklin Inst., 336, 423-433. https://doi.org/10.1016/S0016-0032(98)00036-2.
  40. Simonetti, F. (2004), "Lamb wave propagation in elastic plates coated with viscoelastic materials", J. Acoust. Soc. Am., 115, 2041-2053. https://doi.org/10.1121/1.1695011.
  41. Tamm, K. and Weiss, O. (1961), "Wellenausbreitung in unbergrenzten scheiben und in scheibensteinfrn", Acoustica, 11, 8-17.
  42. Usuki, T. (2013), "Dispersion curves of viscoelastic plane waves and Rayleigh surface wave in high frequency range with fractional derivatives", J. Sound Vib., 332, 4541-4559. https://doi.org/10.1016/j.jsv.2013.03.027.
  43. Weiss, O. (1959), "Uber die Schallausbreitung in verlusbehafteten median mit komplexen schub und modul", Acoustica, 9, 387-399.
  44. Yasar, T.K., Royston, T.J. and Magin, R.L. (2013a), "Wideband MR elastography for viscoelasticity model identification", Magnetic Resonance Medicine, 70, 479-489. https://doi.org/10.1002/mrm.24495.
  45. Yasar, T.K., Klatt, D., Magin, R.L. and Royston, T.J. (2013b), "Selective spectral displacement projection for multifrequency MRE", Phys. Medicine Biology, 58, 5771-5781. https://doi.org/10.1088/0031-9155/58/16/5771.