• Title/Summary/Keyword: fractal set

Search Result 54, Processing Time 0.027 seconds

FRACTAL CODING OF VIDEO SEQUENCE USING CPM AND NCIM

  • Kim, Chang-Su;Kim, Rin-Chul;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.72-76
    • /
    • 1996
  • We propose a novel algorithm for fractal video sequence coding, based on the circular prediction mapping (CPM), in which each range block is approximated by a domain block in the circularly previous frame. In our approach, the size of the domain block is set to be same as that of the range block for exploiting the high temporal correlation between the adjacent frames, while most other fractal coders use the domain block larger than the range block. Therefore the domain-range mapping in the CPM is similar to the block matching algorithm in the motion compensation techniques, and the advantages of this similarity are discussed. Also we show that the CPM can be combined with non-contractive inter-frame mapping (NCIM), improving the performance of the fractal sequence coder further. The computer simulation results on real image sequences demonstrate that the proposed algorithm provides very promising performance at low bit-rate, ranging from 40 Kbps to 250 Kbps.

  • PDF

Hausdorff dimension of some sub-similar sets

  • Kim, Tae-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.397-408
    • /
    • 1998
  • We often use the Hausdorff dimension as a tool of measuring how complicate the fractal is. But it is usually very difficult to calculate that value. So there have been many tries to find the dimension of the given set and most of these are related to the density theorem of invariant measure. The aims of this paper are to introduce the k-irreducible subsimilar sets as a generalization of the set defined by V.Drobot and J.Turner in ([1]) and calculate their Hausdorff dimensions by using algebraic methods.

  • PDF

The Remark on the Fractal Dimensions (후랙탈 차원에 관하여)

  • Kim, Yong Sung;Yoo, Heung Sang;Kang, Ji Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.233-240
    • /
    • 1996
  • Julia set, Fatou set와 Mandelbrot set 가 컴퓨터에 의하여 도형화된 후부터 혼돈 역학체계 (chaotic dynamical system)에 대한 연구가 모든 학계에 비상한 관심을 모으고 있으며 특히 수학자들에 의하여 많은 연구가 이루어지고 있다. 또한 혼돈 역학체계를 기초로 하여 컴퓨터 그래픽스를 이용한 후랙탈(fractal)들의 매혹적인 시각적 표현으로 인하여 최근들어 과학자들 뿐 아니라 일반대중의 후랙탈에 대한 관심이 매우 높아지고 있다. 후랙탈이란 말은 라틴어 fractus(부서진 상태를 뜻함)에서 유래되었으며 1975년 Mandelbrot가 수학 및 자연계의 비정규적 패턴들에 대한 체계적 고찰을 담은 자신의 에세이의 표제를 주기 위해서 만들었다(〔6〕). 후랙탈을 기술하는데 있어서 가장 중요한 양은 차원(dimension)으로, 예컨데 Cantor 1/3 집합은 길이 1인 선분으로부터 시작하야 매 단계마다 모든 선분들의 가운데 1/3을 잘라내는 것을 무한히 반복함으로써 얻어지는데 이 집합의 Lebesgue measure는 0이지만 후랙탈 차원은 log2/log3 로 정수차원이 아닌 실수차원을 갖으며 또한 Cantor 1/3집합은 연속이 아니면서 점도 선도 아닌 집합인 것이다. 이 논문에서는 Box counting dimension 과 Hausdorff dimension에 대한 몇 가지 정의를 하고 정리 2.6, 정리2.7 및 정리 3.3을 증명함으로써 어떤 성질을 갖는 후랙탈의 가장 중요한 양인 후랙탈 차원에 대하여 논의 하고자 한다.

  • PDF

A Study on the Possibility of Introduction of Fractals to the High School Mathematics Curriculum (프랙탈의 고등학교 수학교육과정에의 도입가능성에 관한 연구)

  • 최정숙;신인선
    • The Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.115-138
    • /
    • 1998
  • We seek the possibility of introduction of Fractals to the high school math. curriculum through identifying Fractals teaching programs appropriate for the scopes and sequences in math. education for the high school students. We presented the contents of Fractal theory suitable for the high school students. The following subjects were chosen to be introduced; self-similarity, Fractal dimension, Cantor set, Sierpinsky triangle, Sierpinsky carpel Koch curve, Koch island, perimeter estimate of rugged profiles drawn on paper, and chaos game. We developed the working papers and the criteria for appraisal. Each working paper focuses on the activities in which students can solve the given problems, understanding the characteristics and ideas of Fractals. The working papers were given to the second year students who take science course, and the degree of achievements were analyzed based on the appraisal criteria. The results show that it is possible to introduce Fractals to the high school students.

  • PDF

Data Mining for Detection of Diabetic Retinopathy

  • Moskowitz, Samuel E.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.372-375
    • /
    • 2003
  • The incidence of blindness resulting from diabetic retinopathy has significantly increased despite the intervention of insulin to control diabetes mellitus. Early signs are microaneurysms, exudates, intraretinal hemorrhages, cotton wool patches, microvascular abnormalities, and venous beading. Advanced stages include neovascularization, fibrous formations, preretinal and vitreous microhemorrhages, and retinal detachment. Microaneurysm count is important because it is an indicator of retinopathy progression. The purpose of this paper is to apply data mining to detect diabetic retinopathy patterns in routine fundus fluorescein angiography. Early symptoms are of principal interest and therefore the emphasis is on detecting microaneurysms rather than vessel tortuosity. The analysis does not involve image-recognition algorithms. Instead, mathematical filtering isolates microaneurysms, microhemorrhages, and exudates as objects of disconnected sets. A neural network is trained on their distribution to return fractal dimension. Hausdorff and box counting dimensions grade progression of the disease. The field is acquired on fluorescein angiography with resolution superior to color ophthalmoscopy, or on patterns produced by physical or mathematical simulations that model viscous fingering of water with additives percolated through porous media. A mathematical filter and neural network perform the screening process thereby eliminating the time consuming operation of determining fractal set dimension in every case.

  • PDF

Evaluation of T-stress for cracks in elastic sheets

  • Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.335-346
    • /
    • 2005
  • The T-stress of cracks in elastic sheets is solved by using the fractal finite element method (FFEM). The FFEM, which had been developed to determine the stress intensity factors of cracks, is re-applied to evaluate the T-stress which is one of the important fracture parameters. The FFEM combines an exterior finite element model with a localized inner model near the crack tip. The mesh geometry of the latter is self-similar in radial layers around the tip. The higher order Williams series is used to condense the large numbers of nodal displacements at the inner model near the crack tip to a small set of unknown coefficients. Numerical examples revealed that the present approach is simple and accurate for calculating the T-stresses and the stress intensity factors. Some errors of the T-stress solutions shown in the previous literature are identified and the new solutions for the T-stress calculations are presented.

Development of a Traversability Map for Safe Navigation of Autonomous Mobile Robots (자율이동로봇의 안전주행을 위한 주행성 맵 작성)

  • Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • This paper presents a method for developing a TM (Traversability Map) from a DTM (Digital Terrain Model) collected by remote sensors of autonomous mobile robots. Such a map can be used to plan traversable paths and estimate navigation speed quantitatively in real time for robots capable of performing autonomous tasks over rough terrain environments. The proposed method consists of three parts: a DTM partition module which divides the DTM into equally spaced patches, a terrain information module which extracts the slope and roughness of the partitioned patches using the curve fitting and the fractal-based triangular prism method, and a traversability analysis module which assesses traversability incorporating with extracted terrain information and fuzzy inference to construct a TM. The potential of the proposed method is validated via simulation works over a set of fractal DTMs.

ON ATTRACTORS OF TYPE 1 ITERATED FUNCTION SYSTEMS

  • JOSE MATHEW;SUNIL MATHEW;NICOLAE ADRIAN SECELEAN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.583-605
    • /
    • 2024
  • This paper discusses the properties of attractors of Type 1 IFS which construct self similar fractals on product spaces. General results like continuity theorem and Collage theorem for Type 1 IFS are established. An algebraic equivalent condition for the open set condition is studied to characterize the points outside a feasible open set. Connectedness properties of Type 1 IFS are mainly discussed. Equivalence condition for connectedness, arc wise connectedness and locally connectedness of a Type 1 IFS is established. A relation connecting separation properties and topological properties of Type 1 IFS attractors is studied using a generalized address system in product spaces. A construction of 3D fractal images is proposed as an application of the Type 1 IFS theory.

ASSOUAD DIMENSION: ANTIFRACTAL METRIZATION, POROUS SETS, AND HOMOGENEOUS MEASURES

  • Luukkainen, Jouni
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.23-76
    • /
    • 1998
  • We prove that a non-empty separable metrizable space X admits a totally bounded metric for which the metric dimension of X in Assouad's sense equals the topological dimension of X, which leads to a characterization for the latter. We also give a characterization based on this Assouad dimension for the demension (embedding dimension) of a compact set in a Euclidean space. We discuss Assouad dimension and these results in connection with porous sets and measures with the doubling property. The elementary properties of Assouad dimension are proved in an appendix.

  • PDF

Development of Topography Restoration Model using Fractal Method (프랙탈을 이용한 지형복원 모형개발)

  • Kwon, Kee-Wook;Ahn, Byung-Gu;Lee, Jong-Dal
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.123-135
    • /
    • 2006
  • In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real topography with only a few information about base topography, which can produce almost complete geographic information. Moreover, as a tool for examining the adaptability and efficiency of the model, index of slope range $I_{SR}$, index of surface $I_{SA}$, and index of volume $I_V$ were developed. The model area is respectively set to $75m{\times}75m$, $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, and $1,200m{\times}1,200m$, and then the data obtained by combining the existing interpolation methods and FEDISA model were compared with real measurements. The result of the study showed the adaptability and efficiency of FEDISA model in topography restoration.

  • PDF