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HAUSDORFF DIMENSION OF
SOME SUB-SIMILAR SETS

TAE Sik Kim

ABSTRACT. We often use the Hausdorff dimension as a tool of mea-
suring how complicate the fractal is. But it is usually very difficult
to calculate that value. So there have been many tries to find the
dimension of the given set and most of these are related to the den-
sity theorem of invariant measure. The aims of this paper are to
introduce the k-irreducible subsimilar sets as a generalization of the
set defined by V.Drobot and J.Turner in ([1]) and calculate their
Hausdorff dimensions by using algebraic methods.

1. Introduction

Let X be a non-empty compact subset of the Euclidean space R¢
such that the closure of its interior is itself, that is, (Yaj = X. And let
T,: X - X fori=0,1,--- N — 1 be similarity maps with common
contraction ratio r, (0 < r < 1), such that T;(X°) N T;(X°) = @ for
1 # j. Then these similiarity maps Tp, 11, -+ ,Tn-1 form a self-similar

set
o0

F = m( U 2’;'11:2...7:"(X)),

n=1 (i1ig---ip)

in which Tj,,...;, denotes the composition map T;, oT;, 0---0T; . For
the details, see [3].
For S ¢ {0,1,--- , N — 1}, we now define

0§ = Ay s={(in,d2, - ,ie)rix € Sfor k=1,2,--- 4},

Qs—EQN,,g:{(il,'iz, ------ ):ikeSfork:1,2,-~},
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and when S = {0,1,--- , N — 1}, we simply write 24, and Q for above
sets.

For each number z, let [z] denote the largest integer not greater than
z and K(X) be the space of all compact subsets of X. For given non-
negative integers k, £ with 1 < k < £ and for each non-negative integer
m, we define

(1) g - Qfé - ’C(X) by "Tf{(ihi% T ,ie)} = T%ﬂ'r"ie(X)’

(2) m: Qs — K(X) by 1{(i2,iz, -+ )} = (Vg Torimoin (X),

(3) proj, : Qs (or Q% forn > £) — Q% by

proj[{(il)i% tet 7)} (OI‘ pI'Oje{(il,i2, st 7in)} ) = (ilai21 te ,il),

(4) sy : Qs (or QF for n > mk + ¢) — Q% by
ste{(in iz, - ) Hor sgp{(i1, 62, 1in)} ) = (imkt1,imks2, s bmbee)-

Let A C R and P : Q% — R be a given real valued function. Then
for these Pp and A, a non-empty set I = I(Py; k; A) C Qg is called the
k-irreducible precoding space generated by (P, A) if it satisfies

(1) Py(o) € Aforeveryc el
(2) {s}c’e[proje_l(o)]} NI#0 for everyoel
(3) s,lc’e[proje_l(a)] >0 for someo €I,

and A(I) = ﬂ:zo(s}c’fe)_l(l ) is called the k-irreducible coding space
generated by (Py, A).
For the self-similar set F' defined previously and I = I(Py; k; A), the

k-irreducible sub-similar set F(I) = F{I(P,; k; A)} is defined by
F(I):={xeF:n({x}) e A(I)}
={x € F: Pysg{n "' ({x})}] € A for each integer m > 0}.

Each 7 (or 7(n)) € Q% is called the admissible code of rank n in A(I)
if there exists ¢ € A(I) such that g|, = proj,(¢) = 7, and denoted by
T < A(I). If 7(n) < A(I) for n > £ and sgc(f;‘e)/k](T) =0 foroel,
then 7 is called the admissible code of rank n and of type o and denoted
by T < A(I;0).
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Throughout this paper, let |A| denote the cardinal number of the set
A and define followings:

(1) A™MI):= {re Q% :7<A(I)},

(2) A™;05) = {T€ Q% 7 < A(;04)},

(3) ¢i(n) :=| A™(L;03) |,

(4) @(’n) = (¢1 (n.)s, ¢2(n)a e a¢s(n))a

(8) 1 A™MI) |:= 35—y ¢i(n),

(6) ¢™(1(n)) :=|{e(n+m): o< A™™(I) and g|n =7} | .

For the k-irreducible precoding space I, say, = {01,02,- - ,05}, de-
fine M = M(I) = (0ij)sxs by

o = 1 if s,lcyl{proj[l(ai)} >0, foroi,05 €1,
Y 0 otherwise.

Then M is a strongly irreducible matrix. Thus we have the following
lemma for this matrix. For its proof, see [4].

LEMMA 1.1, Let M be the s X s matrix defined as above. Then M
has a unique positive eigenvalue Ap which is the spectral radius of M
and is simple. Moreover | A |< Ap for any other eigenvalue A of M
and its corresponding eigenvector v = (v1,v,--- ,V,) IS positive, that
is,eachv; >0 forti=1,2,---,s.

Let FE be a subset of R* and § > 0. Then a family of subsets
of R% Cs = {U;}R,, is called a é-cover of E if E C UR,U; and
diam(U;) < § for each i. For a > 0, the a-dimensional Hausdorff mea-
sure H*(E) is defined by H*(E) = limsoinf}_ . diam(U;)* where
the infimum is taken over all {Cs}, and the Hausdorff dimension of £
is defined by the value dimgy(FE) which satisfies H*(E) = oo if a <
dimy(E) and H*(E) = 0 if @ > dimy(FE). From this, we have the
following two lemmas ([2]).

LEMMA 1.2. Let E ¢ R? and a > 0. For given € > 0 and § > 0, if
there exists a §-cover C = {U;} of E such that . diam(U;)® < ¢, then
dimH(E) S a.
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LEMMA 1.3. Let E ¢ R? be a compact set and o > 0. If there
exists € > 0 and & > 0 such that any finite collection C of closed non-
overlapping sets Uy, Us, - - ,U, with diam(U;) < 6 and ) diam(U;)*
< § can not cover E, then dimy (E) > 4.

2. Main Results

Let N, k, £ and s be the positive integers and M be the matrix as
in section 1.
()
THEOREM 2.1. Let u=(1,1,---,1) and v;=(0,---,0,1,0,---,0)
be vectors in R®. Then for each n > £, we have
(1) ®(n) = N"(uMI(»=8/8) | A™(I) |= N"(uM!(»=8/K . q) and
¢i(n) = (®(n) - v;) wheren — £ =r (mod k).
(2) For each T € A™(I;0;), we have

" (r(n))

= N™ (v;MI"'/¥] . u) forr =0,
<N’°+flxgax(vM[”/’°l lou) forr#0, 0<r+7' <k,
<Nr1r21ax(vM["'/k] u) forr#0, k<r+71/,

where n — £ =r (mod k) and n' =1’ (mod k).
In particular, o™ (0;) = N™ (v;M" /¥ ) for 0; € I.

Proof. (1) For each o; = (j1,72, -+ ,Je) € I, there exist 37, 0;
(il’i2, e ,’ik)’S such that (i17i2) tee ,ik’jhj?a Tt 7jl) € Ak+€(I; O'j).
Thus we have ¢;(k +¢) = Y ;_, 0i; and &(k + £) = uM. By induction,
®(mk + £) = uM™. Since each T(mk + £) € A™+¢(]) has N™ 7(mk +
r+£)s for 0 <r <k,

®(n) = Nr(uM[(n—t’)/k]),
for n = mk + r + £. The other parts are clear.
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(2) Case (i) : Suppose that r is zero or n = mk + £ for some inte-
ger m > 0. For each T(n) = ((11,‘12, v 1q€1i11i27 tee 7imk‘) € An(I, 0','),
there exist Z;=1 oi; (41,2, ,Jk)’s such that each (g1,92, - - ,qe, %1, %2
o BmksJ1,72, 5 Jk) € A™T*(I) and is descended from 7(n). Hence
©F(r(n)) = (viM-u). As above, we deduce ©™ ¥(7(n)) = (v;M™ -u) for
each integel' m/ > 0. Since each (ChaQ2, Tt ,Qbil,im t aimk7j17j2a )
Jmk) € MPt™F descending from 7(n) has N*' subcodings in An+™ %+
(I) for 0 < ' <k,

(Pnl('r(n)) = Nr/ (VlM[n’/k] . u) for nl — mlk + rl'

Case (ii) : Suppose n = mk + £+ r for some integer m > 0 and

0<r<k. Let T(’I’L) = (QI>Q2,' L, qeyt1,02,0 7imk’imk+1)
< imk4r) € A™(I;0;). For this 7(n), there exist at most N*~7 7(n +
k—r)’s in A™Y*-7(I), so

o™ ((n)) < N* " max{p™ TF+7(r(n+ k= 1)) s r(n+ k- r) € AMTET(D))
By the case (i),

¢ (r(n)) < N*=7 . N7 nax (viM/H=1 g for 0 < 7 47 < K,
<i<s

and
Q" (r(n)) <Nk NTtri=k lrgfgcs(viM["I/k] -u) fork <r+1r' <2k.
Therefore
@ (7(n) <
Nk“’lrg?gcs(viM["l/k]‘l-u) forr#0, 0 <r+1r' <k,
N™ lrggécs(v,-M["’/k] -u) forr#0,k<r+r'<2k. 0O

THEOREM 2.2. Let Ap be as in Lemma 1.1. Then there exist two
positive constants c1,co with ¢; < ¢ such that

Ap /K < | AP(]) < eoh pln=O/H

for sufficiently large n.

401



Tae Sik Kim

Proof. Let n > £ and v = (v1,v9,--+ ,vs) be the eigenvector cor-
responding to Ap. And let’s A be given such that 0 < v; < A for all
i=1,2,---,s. Since v is the eigenvector of M, we have R®* = (v) @Y
where (v) is the linear span of v and Y is the invariant subspace
under M. So the absolute values of all eigenvalues of M|y are less
than that of Ap by Lemma 1.1. From Theorem 2.1, we have
| A™(I) |= N"(uM("=8/k] . ),

Now we claim that u is not in Y and so there exists a non-zero real
number x and w in Y such that u = kv +w. In fact, if uisin Y, then
we have following contradiction.

Ap = lim || vM™ ||¥/"< limsup || AuM™ ||}/
n—eo n—00
= limsup || AuM [3|*/"< limsup || Au |/ M|3|/"

n—o0 n—00

R n(1/n
= lim || M[3|""< Ap.

Then
| AMI) | = NT(uM{(n=0/k] .
— Nk A[}()n—e)/k] (v -u) + N"(wM(n=0/k ),
Since

lim N™(wM(n=8/k . u)/A[I(D"—l)/k]

n—o00

< lim N* [l w Il MIE ) /a0 < 0
and
A(v-w) < NTKA[Ign—E)/k] (v u)/AEgn—e)/k] < N*g(v -u),
we have

K(v-u) < nl_i+m | A™(I) |/Ag(>"_e)/k] < N¥k(v - u). 0O
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THEOREM 2.3. Let Ap be as in Lemma 1.1. Then there exist a
constant cs > 0 such that for all n > £ and for all T € A™(I), we have

©"(1) < c3Ap.
Here the constant c3 is independent of the rank and of the type of T

but depends only on the eigenvector corresponding to Ap.

Proof. We may suppose that 7 € A™(I;0;). Then by the Theorem

2.1,
n' < N2k Afn' /K] .
¢" (1) <N 1%1?5)(3(sz u)

Let v = (v1,ve,- - ,vs) be the eigenvector corresponding to the eigen-
value Ap and let p:= minj<;<s{v;} > 0. Then for any non-negative
integer q and for i =1,2,--- ;s

p(viM? - u) = (uv;M?-u) < (VvM?-u) = AL(v-u)

and so
'Mq . < 1 . ) .
lnggg(v, u) M (V u)AP

Now put ¢z := N2*471(v - u). Then we have
o (1) S Nt (v - u)AR /M = canly /M, O

THEOREM 2.4. Let F(I) = F{I(Py;k; A)} be any k-irreducible set
determined by (Py, A) and Ap be the value as in Lemma 1.1. Then

dimy(F(I)) = —logAp/klogr.
Proof. Let take a with a > —log Ap/klogr. Since r**Ap < 1, for
given € > 0 we can take n large enough so that

[(n—t)/K)
)

ca(r*Ap < e{diam(X)}~® and r*("~9/Hdiam(X) < ¢
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where ¢ is the constant given in Theorem 2.2. Since diam(B) <
rEl(n=8/kdiam(X), F(n) = {B | B = ma(7), 7 € A™(I)} is an e-cover
of F(I). Since 7, is an injection on A™(I), by Theorem 2.2 we have

a Al O8 <) F(n) 1< Al O7H,
So

Z diam(B)® < 02(rko‘)[("“e)/k]Agg"_e)/k]diam(X)"‘
F(n)

= codiam(X)*(rFAp)("=O/H < ¢,

Therefore dimy {F(I)} < a by Lemma 1.2. Now to prove the converse
inequality, let « < —log Ap/(klogr). By Lemma 1.3, it suffices to show
that we can take ¢ > 0 so that any finite family U of subsets U’s in
X satisfying diam(U) < € and ) _;,diam(U)* < 1 cannot cover F(I).
Since Yoo (r~keA p1)™ converges, take a positive integer M such that
M —£=0 (mod k) and

Z ('r'_kaAp_l)m < clrea/2 . 3dC3Nk,
m>[(M—£)/k

where ¢; and c¢3 are the constants given in Theorem 2.2 and Theorem
2.3. Then the number € := rM will be the one what we want. To certify
this fact, let i be any finite family of subsets U’s in X with diam(U) < €
and ), diam(U)* < 1. Since F(n) defined above is a cover of F'(I) for
each n and each B in F(n) has to meet F'(I), for U not to cover F(I) it
suffices to prove that F(n) must contain some element which is disjoint
from any U’s in Y for large n. For each positive integer p, let

Up) :={U elU : TMPF < diam(U) < pMH{p-Dky,

Then each U € U(p) meets at most 3¢ elements in F(M + (p — 1)),
and so at most 3°N* elements in F(M + pk). Let v, =| U(p) | and 5,
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be the number of sets in F(M + pk) which meet some element in U(p).
Then

Y- rlatkal(M—£)/k+p] < Z diam(U)*
U(p)
< Zdiam(U)a <1,
u

so we have
6}) < 3de,7p < 3der—ka[(M—-()/k+p]—€a'
Since U is finite, we can take a positive integer pp such that
U(p) = 0 for any p > p.

Now let m’ > pp be given. Then for each B in F(M + m'k) which
meets some element in U, there exists some p’ with 1 < p’ < pg such
that B must be contained in a B’ € F(M + p'k). By Theorem 2.3, this

specific B’ contains at most cgAKM T RITMAPRI/K (AW guch
B’s in F(M + n’k). Therefore

| {B € F(M + n'k) : B meets some element in U(p')} |
< 3de,r.-ka[(M—€)/k+p’]-—Ifa63A7}l;~—p'

= 3dec3(,r—kaAP—1)[(M_e)/k+pllAP[M_e/k]+nlr_ea.
So
| {B € F(M + n’k) : B meets some element in I/} |

Po
< 3de63r—eaA[IgM—l)/k]+n Z(r—kaAP—l)[(M—f)/le
p=1

< 3deC3’r‘_"e°‘AP[(M“‘e)/k]+n’ Z (T.—kaAP—l)m
m>{(M—£)/k]

< 1/261AP[(M—l)/k]+n'_
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However, from Theorem 2.2 we have
| F(M +n'k) | > ci Ap MR/ — o) g p[(M=0/k4n",

So we find that there must exist some element B in F(M + n’k) which
does not meet any element of &. That is, for large n, F(n) contains

some element B which is disjoint from any U € U and so U cannot
cover F(I). O

COROLLARY 2.5. Let F be the self-similar set defined in section 1.
Then

dimgy (F) = —log N/ log r.

Proof. Take A =R. Then for each 1 < k < ¢, I = I(Py; k;R) = Q%
and is independent of the real valued map Py. And F = F(I(FPy; k;R))
and M has Ap = N*. By Theorem 2.4, the Corollary holds. |

COROLLARY 2.6. For any pair (Pg; A) with | I(Pg;£; A) | = n > 0,
we have
dimpy (F(I)) = —logn/flogr.

3. Examples

Let F be a self-similar set generated by two similarity maps Tp and
Ty on X = [0,1] x [0,1] with common simility ratio 1/2 and satisfying
open set condition, that is, there exists non-empty open set V such
that To(V) and T1(V) are disjoint. For this F', consider following two
sub-similar sets.

EXAMPLE 3.1. For Q = {(0,0,1),(0,1,1),(1,0,1),(1,1,0)}, define
P;:{0,1}3 - R by

1 if TeQ
0 if 7¢Q.
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Then I(P3;1;{1}) = Q is not l-irreducible, but I(P3;2;{1}) = Q is
2-irreducible precoding space with

M(I) = and Ap = 2.

= OO O
_ o OO
O = e
O =

So by Theorem 2.4, we have

dimyg{F(I)} = —log2/{2log(1/2)} = 1/2.

EXAMPLE 3.2. In digital communication, we usually use binary dig-
ital codes. Then to check if an error occurred during transmission, we
encode the given messages by adding parity checking bits as follows:
For given 7 = (41, %2, 3, %4, 15, %6, i7, %8, i9, - - * ), encode it by p = (41, 2, i3,
i4, J1,15, %6, 17,18, J2, %9, * ), Where

: { 1 i Ygoidage—1)+q s 0dd
e = . 4 . .
0 if Zq:l i4(k—1)+q IS even.
Now for the map Ps : {0,1}°> — R defined by
5
PS((il,iQ)i3ai4)i5)) - Zikn
k=1

I = I(Ps;5;{0,2,4}) = {0 € {0,1}° : Ps(0) = 0,2,4} is 5-irreducible
with 16 precodes and by Corollary 2.6, the encoding image F(I) =
F{I(P5;5;{0,2,4})} has

dimg {F(I)} = —log 16/{5log (1/2)} = 4/5.
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