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The Remark on the Fractal Dimensions
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1.Introduction

In the last few years fractals have become enormously popular as an art form, with the
advent of computer graphics, and as a model of a wide variety of physical phenomena.
Whilst it is possible in some ways to appreciate fractals with little of no knowledge of
their mathematics, an understanding of the mathematics that can be applied to such a
diversity of objects certainly enhances one’s appreciation. The word ‘fractal’ was coined by
Mandelbrot in his fundamental essay from the Latin fractus, meaning broken, to describe
objects that were too irregular to fit into a traditional geometrical setting. The main tool of
fractal is dimension in its many forms ([6]). Here, the fractal dimension of set is a
number which tells how densely the set occupies the metric space in which it lies. The
purpose of this paper is to study some properties of fractal and it's dimension. In
particular, fractal dimension for non-smooth and irregular sets might be a real number that
is not an integer number. In this paper, we will define the Box counting dimension and
Hausdorff dimension etc, and will prove theorem 2.6, theorem2.7 and theorem3.3.

2.Hausdorff and Box counting dimensions

Definition 2.1. Let U be any non-empty subset of n-dimensional Euclidean space IR". A

subset U of IR" is connected if it consists of just one ‘piece’. The set U is totally
disconnected if the connected component of each point consists of just that point

(111,063,17D).

Definition 2.2. Let (X,d) denote a complete metric space, H(X) be the Hausdorff measure
of X and A be non-empty compact subset of X. For any ¢ > 0, let B.(x) be the closed

ball of radius & and center at a point x € X. Let N(A, €) be the least number of closed
balls of radius & to cover the set A. That is, N(A, €) is the smallest positive integer M

M
such that AC "UlBt(x,,), x, %, ,x,€X. We define the Box counting dimension or Box

N : e log (N(A, 8))
dimension of A as follows ; (1) dimgA Ll_t}'(l) ~log 8 .

Roughly speaking, (1) says that N(A,8) =68 ~°, for small 8, where s=dimgA ([1],[6]).

Definition 2.3. Let U be any non-empty subset of n-dimensional Euclidean space IR"
and the diameter of U defined as | U] = sup {|x-y!|; x,y € U}. If {U,;} is a countable

(of finite) collection of sets of diameter at most & that cover of F, then we say that { U;}

is a d-cover of F. Let F be a subset of IR" and let S be a non-negative number. For

any &6>0, we define H5(F)= inf { gl fU;1 5{U;})is a &-cover of F} and
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(F)= limH%(F).
80
We call H(F) the s-dimensional Hausdorff measure of F. If t>s and { U;}is a 6 -cover

of F, we have X | U;|*<6'°3 | U;|°*. Letting 6 —0, we see that if H(F)<o then

HY(F)=0 for t>s. Here we known that there is a critical value of s at which H(F)
"jumps’ from <o to 0 (See Figure 1). This critical value is called the Hausdorff dimension
of F and written dim ,F.

H(F)

0 dim zF S
Figure 1. Graph of H°(F) against s for a set F. The Hausdorff dimension is the value of

s at which the ‘jump’ from < to 0 occure.

Accordingly, dimzF=inf { s ;H'(F)=0} = sup { s ;H'(F)=0o}, so that
oo if s{dimyF

H(F)=
0 if sddimgF ([11.6 D.

Definition 2.4. Let U be a closed subset of IR®. A mapping S : U — U is called a
contraction on U if there is a number ¢ with 0<c<1 such that | S(x)-S(y)| <c|x-y |,
for all x,y € U ([6D.

Proposition 2.5. A4 set F C IR" with dim gF<1 is totally disconnected.

Proof. Let x and y be distinct points of F. Define a mapping f :IR"—[0,) by
flz)=| z-x|. Since | f(z)-f(w)| < !z-w |, we have dimgAF)<dimzF{1. Thus fiF) is a

subset of IR of H'-measure or length zero. Choosing r with r& flF) and 0<r<fly).
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It follows that F={ z € F; |lzx|<r} U {z€ F; lzx|>r }. Thus F is
contained in two disjoint open sets with x in one set and y in the other. So that x and y

lie'in different connected components of F. ///

Theorem 2.6. Let F be the middle third Cantor set. (See Figure 2). Let s=log2/log3=

06309+ . Then dim  F=s and %SH‘(F)SI.

C, O 1
C . 2
3 3
&)
2
Cs i3 §3
F FL FR

Figure 2. Construction of the middle third Cantor set F, by repeated removal of the
middle third of intervals. Note F; and Fg the left and right parts of F are copies of F

scaled by a factor %

Heuristic calculation. The middle third Cantor set is divided into two parts; one is the
left part F.=FNIO0, %‘] and the other right part is FR=m['2—,1]. These two parts are
similar to F with contractive factor %—and F=F;UFg Appling to the Hausdorff measure,

H(F)=H(F;)+H(Fp)= (%)‘H’(F) + (—%)‘H’(F). We get 1= 2(—;—)’ or s=log2/log3.

Generous calculation. The covering { U;} of F consisting of the 2* interval of C, of the
length 37* gives that Hoyw (<2 | U; ) s=28"5—1 if s=log2/log3. Letting k— o gives
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HFE=<1.If | U |° = %=3"‘. then we can prove H‘(F)Z%. For each U, let k be
the integer such that 3 <y U1 <375 1f 1=k then U; intersects at most
Th=9i.97k=9/.37%<9R%| ;| * with basic intervals of C;. Choose j large enough so

that 37Y*Y< | y;|, for all U, then counting intervals gives 2’< 22"3’1 U;| °. Therefore

H(F) 2 7

Theorem 2.7. Let ACIR" be a compact subset and let 0<r<l. Then
dim gA= hm mf-—ogQM’L,D— .

1108( )

Proof. For any &>0, there is a j such that #*'<e<s.  Then r-r7/'<e Kyt
so that logr ! +jlogr™> log ¢ 12 logr+(j+1)logr~! and
(logr Y +jlogr ) (log ¢ D 7'<[logr+(i+1)logr 17" .

Since N(A,e) = N(A,8) whenever £<8, N(A, ¥Y)<N(A, e )<N(A, 1),
. log(N(A, )
Therefore 1}1& inf Tog(r)

= log(N(A, 7))
e () + slog(r

A e
< llm mf_x_(M_._D_
og(e ™)

= dim gA

o log(N(A, 1)
<
P2 Tog -+ (1) logr

j+1
= lim inf M

G+ log(r™

= 11m mf——gi%’é‘l)ﬁ)— 7/

Example 2.8. Let C be the middle- @ Cantor set in the line. Let # be chosen so that 2

B+a=1, so that 0KB< % Then in the construction of the Cantor set, there are 2

intervals of length 8’ which cover C, so N(C, 8 7)=2’.
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log(N(C, 87).

Therefore dim pC= lim inf jlog( B ™")

— i e log(2D)
N it e( 8

—_ log2
log(8 7Y -~

Here we note that 0<dim zC<1.

3.Potential dimensions.

The ideas of potential and energy will be familiar to us with a knowledge of gravitation or
electrostatics. Let # be a mass distribution on F with I(x){o where I{u) is the

s-energy of ﬂ.

Definition 3.1. The s-potentiul at a point x of IR™ is defined as follows ;

e {x)= f —Id;‘:(j’lL; for $=0. the s~energy of u is defined ;
= = [ [-dulx)du(y)
I(u)= [ o (Dadu(n)= [ [A2D )

The following is well-known ([21,[61,(7]) :

© (B/Sx))

> {c for all x € F,

1° . Let F C IR" Borel set and 0<c< o be a constant. If m

then HY(F)= _/1_21_’)_ .

# (B(x))

=
- >c for all x

2° . Let F C IR" Borel set and 0<c< < be a constant, If lin(}

F, then H(F)<2°ux(IRM/c.

3" . Let F be a Borel set with 0<H*(Ff)<oo, then there exists a constant b and a compact
set ECF with the H(E)>0 such that H(ENB,(x))<b for all xIR™ and r > 0.

Lemma 3.2. Let F be a Borel subset with H(F)=oo, then there exists a compact set E
CF with 0<H(F)<o and such that for some constant b. H(ENB,x))<br for all

x€1R” and r=0.
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Proof. Let x satisfying u(A)=(FNA). Then, by 2° if

H(FNB/x))

F1={xEIR;1,}£1(')1 r‘

yattey then
H(F)<227 " u (R =1 (R =2 0 IR"NF ) = 4 1),

Thus H(F))S 3 H(F). INow, H(F\F\)= H(F\H*(F\) = H'(F)~ L =1 .

- H(FNBLx))

Let E;=F—F, and H'(E})>0, then llrp() - <2'** for some x€F,. Therefore

H(FNB
by 3° there exists ECE; with H*(E)>0 and a number 7, such that —(—r’l—-@SZ”Z
H(FNBAS) _ H(R)

<r<
for all XEE and 0<r< 7,. But » "o

where %E)- =b, Thus
0

H(ENB())<b". ///

Theorem 3.3. Let F C IR". If there is a mass distribution # on F with I(x )<, then
H(F)=o and dimgFz=S§.

Proof. Suppose that I{#)<c for some mass distribution # with support contained in F.

1 (Bx)) ; u{(B/x))

Define Fy= { x€F: 1’1_1310 - 0}. Then ") = p x, where p is density. If

x€F,, for each &>0, there exists { r;}decreasing to 0 such that u(BJfx))2eri.
We claim # (F[)=0.

First, if «({x})>0, Ig(u)=f¢s(x)du(x)=ff—%%)'

Zcfy(x)duZCu (x)fdu, fldu=00,
therefore I{u)=co. Now, if pg({x})<0, ie. ©#({x})=0, from continuity of x# be taking

2;(0<q<r) small enough, (A,')Z% eri (i=1,2,-), where A;= B,(x)—B,(x). Then aqX{r;

such that  u(B,(x))< 8 =

oo

er,  n(A)= u(B (D)~ u(By(x) =g eri  Taking

subsequence if necessary, suppose that 7;,,<{q; for all i, where A; are disjoint annulus

centered at x.

[s-]
= ZO% eririf=o00, For ¢;< | x—y| =7,
Pa

For xEFh ¢s(x)=f_dﬂgﬂ_

lx—y]*
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1

1 1
4> et
lx—yl*  (r

a;, = lx—yl

>1.
r

f du(y) [ de(y) _1 1
A lx—yl* Ja n ri 4

sr’,‘=%e

But I(g)= fm(x)du(x)(oo, so ¢ (x)(o,

du(y) du(y) s 1
e D= f|x —y|°® ,1fn,|x WP VIR

Therefore ¢ {x)=0o0 for p-almost all x. Therefore #(F|)=0, Since

u(F)
C

for xe F—F,. By 1° and since =0,

H(F—F)) (R e(F) _ u(P i ) _ o
H(F) > clzuc_ I—ﬂc' But 161310“0—.

4

H’(F)Z“"—%E)'=°°. Hence H(F)=oco, ///

L —

Therefore

n{B/Lx))

l')“ and then A; are disjoint annulus centered at x.

=0'

Important application of this note will be given in the proof of the projection theorems and
in the determination of the dimension of Brownian paths. The theory of the fractal and

chaotic dynamical system tries to explain all problems of natural

phenomena as

mathmatical model and have a characterstic of study of various field . The fractal have
given many influences to scholars that have recognition of irregular pattern and provided
new aspects to understand natural and been required with study beyond major.
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