• Title/Summary/Keyword: fractal dimensions

Search Result 151, Processing Time 0.024 seconds

Fractal Model of Transient Flow in a Dual-porosity Aquifer with Constant-head Upper Boundary (일정수두 상부경계를 가지는 이중공극 대수층내 부정류에 관한 프락탈모델)

  • 함세영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 1997
  • So far, several fractal models of fluid flow in a fractured aquifer have been developed. In this study, a new fractal model is derived that considers transient flow in the dual-porosity aquifer with the fracture skin between the fissure and the block, and the storage capacity and the wellbore skin on the pumping well. Constant-head upper boundary is specified in the block. This model is a generalized one which comprises both modified Hantush equation (1960) and Boulton-Streltsova equation (1978). Type curves are plotted for different flow dimensions (0.5, 1, 1.5, 2, 2.5 and 3) with various values of the leakage factor and the fracture skin. They show dimensionless drawdown in the pumping well and observation wells located either in the fissure system or in the matrix block.

  • PDF

Prediction of Long-term Solar Activity based on Fractal Dimension Method

  • Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.3-46
    • /
    • 2016
  • Solar activity shows a self-similarity as it has many periods of activity cycle in the time series of long-term observation, such as 13.5, 51, 150, 300 days, and 11, 88 years and so on. Since fractal dimension is a quantitative parameter for this kind of an irregular time series, we applied this method to long-term observations including sunspot number, total solar irradiance, and 3.75 GHz solar radio flux to predict the start and maximum times as well as expected maximum sunspot number for the next solar cycle. As a result, we found that the radio flux data tend to have lower fractal dimensions than the sunspot number data, which means that the radio emission from the sun is more regular than the solar activity expressed by sunspot number. Based on the relation between radio flux of 3.75 GHz and sunspot number, we could calculate the expected maximum sunspot number of solar cycle 24 as 156, while the observed value is 146. For the maximum time, estimated mean values from 7 different observations are January 2013 and this is quite different to observed value of February 2014. We speculate this is from extraordinary extended properties of solar cycle 24. As the cycle length of solar cycle 24, 10.1 to 12.8 years are expected, and the mean value is 11.0. This implies that the next solar cycle will be started at December 2019.

  • PDF

Analysis of Characteristics in Ara River Basin Using Fractal Dimension (프랙탈 차원을 이용한 아라천 유역특성 분석)

  • Hwang, Eui-Ho;Lee, Eul-Rae;Lim, Kwang-Suop;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.831-841
    • /
    • 2011
  • In this study, with the assumption that the geographical characteristics of the river basin have selfsimilarity, fractal dimensions are used to quantify the complexity of the terrain. For this, Area exponent and hurst exponent was applied to estimate the fractal dimension by using spatial analysis. The result shows that the value of area exponent and hurst exponent calculated by the fractal dimension are 2.008~2.074 and 2.132~2.268 respectively. Also the $R^2$ of area exponent and hurst exponent are 94.9% and 87.1% respectively too. It shows that the $R^2$ is relatively high. After analyzing the spatial self-similarity parameter, it is shown that traditional urban area's moderate slope geographical characteristic closed to 2D fractal in Ara water way. In addition, the relation between fractal dimension and geographical elements are identified. With these results, fractal dimension is the representative value of basin characteristics.

Data Mining for Detection of Diabetic Retinopathy

  • Moskowitz, Samuel E.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.372-375
    • /
    • 2003
  • The incidence of blindness resulting from diabetic retinopathy has significantly increased despite the intervention of insulin to control diabetes mellitus. Early signs are microaneurysms, exudates, intraretinal hemorrhages, cotton wool patches, microvascular abnormalities, and venous beading. Advanced stages include neovascularization, fibrous formations, preretinal and vitreous microhemorrhages, and retinal detachment. Microaneurysm count is important because it is an indicator of retinopathy progression. The purpose of this paper is to apply data mining to detect diabetic retinopathy patterns in routine fundus fluorescein angiography. Early symptoms are of principal interest and therefore the emphasis is on detecting microaneurysms rather than vessel tortuosity. The analysis does not involve image-recognition algorithms. Instead, mathematical filtering isolates microaneurysms, microhemorrhages, and exudates as objects of disconnected sets. A neural network is trained on their distribution to return fractal dimension. Hausdorff and box counting dimensions grade progression of the disease. The field is acquired on fluorescein angiography with resolution superior to color ophthalmoscopy, or on patterns produced by physical or mathematical simulations that model viscous fingering of water with additives percolated through porous media. A mathematical filter and neural network perform the screening process thereby eliminating the time consuming operation of determining fractal set dimension in every case.

  • PDF

A Chaotic Pattern Analysis of High Impedance Faults (고저항 지락 사고의 카오스 패턴 해석)

  • Ko, Jae-Ho;Bae, Young-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.542-544
    • /
    • 1997
  • The analysis of distribution line faults is essential to the proper protections in the power system. A high impedance fault does not make enough current to cause conventional protective devices. In this paper, Fractal dimensions are estimated for distinction between normal status and fault status in the power system. Application of the concepts of the fractal geometry to analyze chaotic properties of high impedance fault current was described. In addition, to analyze variation of fault current and normal current on phase plane, embedding state variables are reconstructed from 1 dimensional time series.

  • PDF

Hydraulic Parameter Evaluation by Sensitivity Analysis of Constant and Variable Rate Pump Test in Leaky Fractal Aquifer (누수성 프락탈 대수층내의 일정 또는 다단계 양수시험의 민감성 분석에 의한 수리상수 결정)

  • 함세영
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.311-319
    • /
    • 1994
  • This paper presents a sensitivity analysis to obtain best fit of hydraulic parameters of leaky fractal aquifer. The sensitivity analysis uses the least squares method. The hydraulic parameters (generalized transmissivity and generalized storage coefficient) can be easily determined by the sensitivity analysis for various flow dimensions and different values of the leakage factor. Furthermore, the sensitivity analysis was applied to variable-rate pump tast at several abstraction wells, A computer program was developed to evaluate the hydraulic parameters by the sensitivity analysis.

  • PDF

A Study on High Impedance Fault Defection Method Using Neural Nets and Chaotic Phenoma (신경망과 카오스 현상을 이용한 고저항 지락 사고 검출 기법에 관한 연구)

  • Ryu, Chang-Wan;Shim, Jae-Chul;Ko, Jae-Ho;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.897-899
    • /
    • 1997
  • The analysis of distribution line faults is essential to the proper protections of the power system. A high impedance fault does not make enough current to cause conventional protective devices. It is well known that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. This paper describes an algorithm using back-propagation neural network for pattern recognition and detection of high impedance faults. Fractal dimensions are estimated for distinction between random noise and chaotic behavior in the power system. The fractal dimension of the line current is also used as a indication of the high impedance fault.

  • PDF

Verification and application of beam-particle model for simulating progressive failure in particulate composites

  • Xing, Jibo;Yu, Liangqun;Jiang, Jianjing
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-283
    • /
    • 1999
  • Two physical experiments are performed to verify the effectiveness of beam-particle model for simulating the progressive failure of particulate composites such as sandstone and concrete. In the numerical model, the material is schematized at the meso-level as an assembly of discrete, interacting particles which are linked through a network of brittle breaking beams. The uniaxial compressive tests of cubic and parallelepipedal specimens made of carbon steel rod assembly which are glued together by a mixture are represented. The crack patterns and load-displacement response observed in the experiments are in good agreement with the numerical results. In the application respect of beam-particle model to the particulate composites, the influence of defects, particle arrangement and boundary conditions on crack propagation is approached, and the correlation existing between the cracking evolution and the level of loads imposed on the specimen is characterized by fractal dimensions.

Effect of exposure time and image resolution on fractal dimension (노출 시간과 영상 해상도가 프랙탈 차원값에 미치는 영향)

  • An Byung-Mo;Heo Min-Suk;Lee Seung-Pyo;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;Kim Jong-Dae
    • Imaging Science in Dentistry
    • /
    • v.32 no.2
    • /
    • pp.75-79
    • /
    • 2002
  • Purpose : To evaluate the effect of exposure time and image resolution on fractal dimension calculations for determining the optimal range of these two variances. Materials and Methods : Thirty-one radiographs of the mandibular angle area of sixteen human dry mandibles were taken at different exposure times (0.01, 0.08, 0.16, 0.25, 0.40, 0.64, and 0.80 s). Each radiograph was digitized at 1200 dpi, 8 bit, 256 gray level using a film scanner. We selected an Region of Interest (ROI) that corresponded to the same region as in each radiograph, but the resolution of ROI was degraded to 1000, 800, 600, 500, 400, 300, 200, and 100 dpi. The fractal dimension was calculated by using the tile-counting method for each image, and the calculated values were then compared statistically. Results: As the exposure time and the image resolution increased, the mean value of the fractal dimension decreased, except the case where exposure time was set at 0.01 seconds (α = 0.05). The exposure time and image resolution affected the fractal dimension by interaction (p<0.001). When the exposure time was set to either 0.64 seconds or 0.80 seconds, the resulting fractal dimensions were lower, irrespective of image resolution, than at shorter exposure times (α = 0.05). The optimal range for exposure time and resolution was determined to be 0.08- 0.40 seconds and from 400-1000 dpi, respectively. Conclusion : Adequate exposure time and image resolution is essential for acquiring the fractal dimension using tile-counting method for evaluation of the mandible.

  • PDF

The Analysis of Tidal Channel Development Using Fractal (프랙탈 기법을 이용한 조류로 발달 양상의 분석)

  • Eom, Jin-Ah;Lee, Yoon-Kyung;Ryu, Joo-Hyung;Won, Joong-Sun;Choi, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • The tidal channel is influenced by sediment type, grain size, grain composition and tidal currents in tidal flat. The development of tidal channel including density, shape and order can be used to analyze the characteristics of tidal channel. The quantitative investigation to the tidal channel is insufficiency. In this paper, we represented the fractal analysis method according to the quantitatively analysis in tidal channel and compared with the different intertidal channel patterns. The tidal channel was extracted from the IKONOS image of the southern part of the Kanghwa-do. We used the Box-counting method to estimate fractal dimensions for each tidal channel. As a result, the fractal dimension values (D) were 1.31 in the southern Kanghwa-Do. Linear pattern and less dense channel development area had low D values (from 1.0563 to 1.0672). Dendritic pattern and dense channel development area had high D values (from 1.2550 to 1.3016). In other words, fractal dimension values had difference about 0.2 values according to the characteristic of tidal channel development. We concluded that fractal analysis can be able to quantitatively classification in tidal channel.