• 제목/요약/키워드: four-box bridge deck

검색결과 11건 처리시간 0.022초

Effect of windshields on the aerodynamic performance of a four-box bridge deck

  • Chen, Xi;Dragomirescu, Elena
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.31-41
    • /
    • 2020
  • A new type of bridge deck section consisting of four-box decks, two side decks for vehicular traffic lanes and two middle decks for railway traffic, has been experimentally investigated for determining its aerodynamic properties. The eight flutter derivatives were determined by the Iterative Least Squares (ILS) method for this new type of four-box deck model, with two windshields of 30 mm and 50 mm height respectively. Wind tunnel experiments were performed for angles of attack α = ±6°, ±4°, ±2° and 0° and Re numbers of 4.85×105 to 6.06×105 and it was found that the four-box deck with the 50 mm windshields had a better aerodynamic performance. Also, the results showed that the installation of the windshields reduced the values of the lift coefficient CL for the negative angles attack in the range of -6° to 0°, but the drag coefficient CD increased in the positive angle of attack range. However, galloping instability was not encountered for the tested reduced wind speeds, of up to 9.8. The aerodynamic force coefficients and the flutter derivatives for the four-box deck model were consistent with the results reported for the Messina triple-box bridge deck, but were different from those reported for the twin-box bridge decks.

Yaw wind effect on flutter instability of four typical bridge decks

  • Zhu, Le-Dong;Xu, You-Lin;Guo, Zhenshan;Chang, Guang-Zhao;Tan, Xiao
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.317-343
    • /
    • 2013
  • When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat ${\Pi}$-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between $-3^{\circ}$ and $3^{\circ}$, and the yaw wind angles corresponding to the minimal critical wind speeds are between $4^{\circ}$ and $15^{\circ}$. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.

FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동 (Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate)

  • 남정훈;정상균;윤순종;김병석;조근희
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF

PSC 박스거더 교량부재의 횡방향 프리스트레싱에 따른 구조거동 실험연구 (An Experimental Study on Structural Behavior of Concrete Box Girder Member with Transverse Prestressing)

  • 오병환;최영철;최정선;이성철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.77-80
    • /
    • 2004
  • In bridge deck systems, deflections and cracking can be controlled by longitudinal and transverse prestressing, There are some benefits, longitudinal cracking control, the thickness reduction of deck slab, the widening of deck width and the reduction of the cross section area, in transversely post-tensioned concrete box girder bridges. However, it has been not sufficient to study the structural behaviors of transversely post-tensioned concrete box girder. Therefore, It is needed to predict the structural behaviors by prestressing and static loading. In this study, the analytical and experimental load tests are carried out to study the effect of transverse prestressing on concrete box girder. For these objectives, four test specimens are fabricated with various tendon spacing and steel ratio of top slab. The analytical and experimental studies are performed to estimate effects of the prestressing and failure tests.

  • PDF

Effects of deck's width-to-depth ratios and turbulent flows on the aerodynamic behaviors of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lan, Chao-Yuan
    • Wind and Structures
    • /
    • 제6권4호
    • /
    • pp.263-278
    • /
    • 2003
  • This study investigates the effects of a bridge deck's width-to-depth (B/H) ratio and turbulence on buffeting response and flutter critical wind speed of long-span bridges by conducting section model tests. A streamlined box section and a plate girder section, each with four B/H ratios, were tested in smooth and turbulent flows. The results show that for the box girders, the response increases with the B/H ratio, especially in the vertical direction. For the plate girders, the vertical response also increases with the B/H ratio. However, the torsional response decreases as the B/H ratio increases. Increasing the B/H ratio and intensity of turbulence tends to improve the bridge's aerodynamic stability. Experimental results obtained from the section model tests agree reasonably with the calculated results obtained from a numerical analysis.

복합상자교량의 콘크리트 건조수축과 크리프 영향력 (Effects of Creep and Shrinkage on Composite Box Girder)

  • 김성근
    • 대한토목학회논문집
    • /
    • 제6권2호
    • /
    • pp.17-22
    • /
    • 1986
  • 본 연구에서는 교량 구조물의 콘크리트덱에 시공시 생기는 건조수축과 크리프에서 오는 영향을 검토하였다. 본 연구에서는 4가지의 교량을 비교하였으며, 그 중 두 개의 직선복합 상자교량과 2개의 곡선상자교량을 (+)모멘트 지역과 (-)모멘트 지역프로 구분하여 위의 영향에서 오는 응력변화의 차이점을 검토하였다. 또한 변형율과 처짐에 미치는 영향도 검토하였다. 해석 방식 은 Vlasov의 미분방정식을 이용하였으며, 유한차분법(Finite Difference Method)을 사용하였다.

  • PDF

콘크리트 바닥판의 아스팔트 두께에 따른 강박스거더교의 상하 온도차 (Vertical Temperature Difference of Steel Box Girder Bridge Considering Asphalt Thickness of Concrete Deck)

  • 이성행
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.602-608
    • /
    • 2019
  • 본 연구에서는 강박스거더교 바닥판의 아스팔트 두께에 따른 단면 상하 온도차를 산정하고, 이에 따른 설계기준의 자료를 제공하고자 하였다. 아스팔트 두께 0mm, 50mm, 100m, 150mm의 4개 강박스거더 모형시험체를 제작하였다. 각 모형에 17~23개의 온도 센서를 상부 콘크리트와 강박스거더에 부착하였다. 이 센서 중 Euro code와 온도차를 비교 할 수 있는 6개의 온도 게이지를 선정하였다. 각 모형의 기준 대기온도에서 최대 온도와 최저 온도를 계산하고, 이를 바탕으로 온도차(경사)를 산정하여, 4개 각 모형에서 온도차 모델을 제시하였다. 0mm ~ 100mm 온도차 모델은 슬래브 최상단에서 Euro code의 온도차와 비교할 때 -0.9~-1.5도 더 낮은 온도차를 보였다. 전체적으로 측정된 온도차는 Euro code와 비교하여 5.45%~8.33%정도의 오차가 있음을 확인하였다. 산정된 온도와 평균온도의 차를 표준오차의 배수로 산정한 표준오차 계수는 최상단과 최하 단에서 평균 2.50 ~ 2.51배의 값으로 일정한 범위에서 산정되었다. 제시된 온도차 모델은 국내 교량 온도설계 온도차 기준 산정 시 기본 자료로 활용될 수 있을 것으로 판단된다.

The smart PFD with LRB for seismic protection of the horizontally curved bridge

  • Kataria, N.P.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.691-708
    • /
    • 2016
  • Recently, number of smart material are investigated and widely used in civil construction and other industries. Present study investigates the application of smart semi-active piezoelectric friction damper (PFD) made with piezoelectric material for the seismic control of the horizontally curved bridge isolated with lead rubber bearing (LRB). The main aim of the study is to investigate the effectiveness of hybrid system and to find out the optimum parameters of PFD for seismic control of the curved bridge. The selected curved bridge is a continuous three-span concrete box girder supported on pier and rigid abutment. The PFD is located between the deck and abutments or piers in chord and radial directions. The bridge is excited with four different earthquake ground motions with all three components (i.e. two horizontal and a vertical) having different characteristics. It is observed that the use of semi-active PFD with LRB is quite effective in controlling the response of the curved bridge as compared with passive system. The incorporation of the smart damper requiring small amount of energy in addition with an isolation system can be used for effective control the curved bridge against the dynamic loading.

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가 (Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck)

  • 배영민;오동천;박용걸
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.683-692
    • /
    • 2020
  • 본 논문에서는 철도교량상판에 적용하는 방수재료 선정을 위한 이음부 및 균열부에 대한 거동 저항 성능평가를 수행하였다. PSC거더 철도 교량상판에서 발생하는 일반적인 변위 범위 조건을 도출하여, 도출한 결과에 따라서 방수재료의 균열 거동 저항 성능평가 방법을 개발하였다. 재안하고자 하는 평가를 위한 균열거동폭 (mm)을 설정하기 위해 레일도상이 설치되어있는 PSC 거더 교량을 대상으로 유한요소 모델링 해석을 수행하였으며, 최소 균열 거동 범위 (약 1.5mm)를 도출하였다. 평가 방법으로서는 교량 상판에 통상적으로 사용되는 시멘트계 도막 시스템, 폴리우레탄 코팅, 접착식 아스팔트 시트 및 합성 고무 겔 복합 아스팔트 시트 시스템 총 4가지 종류의 방수재료를 선정하여, 각 방수재료 종류별 5가지의 시편을 제조하여 성능 평가를 수행하였다. 각 시험편별로 4가지의 균열 거동폭조건 (1.5, 3.0, 4.5, 6.0mm)에 대해 평가를 수행하였으며, 본 연구를 통하여 철도교량에 일반적인 균열 거동 폭을 고려한 평가 기준에 따라 각 방수재료별 누수저항성 평가에 따른 철도교량상판 사용 적합성을 판단하였다.