• Title/Summary/Keyword: four-bar linkage

Search Result 47, Processing Time 0.023 seconds

Development of a general purpose software package for robot simulation (범용 로보트 시뮬레이션 팩키지 개발에 관한 연구)

  • 강대희;주광혁;김학표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.5-8
    • /
    • 1986
  • The simulation algorithm for all kinds of robots with arbitrary degrees of freedom which are combined with revolute joints or prismatic joints, or combinations was studied and implemented. This simulation package is composed of trajectory planning routine, control routine, kinematics routine using Newton-Raphson method, dynamics based on Newton-Euler method with four-bar linkage analysis, input routine and output routine.

  • PDF

One-touch Descending Lifeline with Sliding Linkage Structure (슬라이드 링크 구조를 이용한 원터치 완강기)

  • Kim, Wonchan;Na, Dayul;Moon, Hyein;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.42-47
    • /
    • 2021
  • A one-touch descending lifeline that can easily be installed and rapidly evacuated in the event of a fire accident in high-rise buildings was proposed to overcome difficulties of conventional descending lifeline such as complex installation methods and procedures. However, this lifeline exhibits limitations such as restrictions in installation location and large apparatus size. Therefore, this paper proposes a sliding-type descending lifeline, which has a similar operation to that of current one-touch descending lifeline and solves the aforementioned limitations. A double square link mechanism including a sliding four-bar linkage is proposed and the descending lifeline support is redesigned to unfold in two different planes, allowing 3D movement. Additionally, the shape of the support frame is designed to obtain two attachment surfaces that can be attached to a wall, irrespective of the angle between the window and the inner wall. FEA analysis using ABAQUS is performed to ensure that the robustness of the presented support complies with the Fire Control Act Enforcement Decree. Finally, the feasibility of the proposed sliding one-touch descending lifeline is verified through fabrication.

Mechanical Design Fabrication and Test of a Biomimetic Fish Robot Using LIPCA as an Artificial Muscle (인공근육형 LIPCA를 이용한 물고기 모방 로봇의 설계, 제작 및 실험)

  • Heo, Seok;Wiguna, T.;Goo, Nam-Seo;Park, Hoon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.36-42
    • /
    • 2007
  • This paper presents mechanical design, fabrication and test of a biomimetic fish robot actuated by a unimorph piezoceramic actuator, LIPCA(Lightweight Piezo-Composite curved Actuator.) We have designed a linkage mechanism that can convert bending motion of the LIPCA into the caudal fin movement. This linkage system consists of a rack-pinion system and four-bar linkage. Four types of artificial caudal fins that resemble caudal fin shapes of ostraciiform subcarangiform, carangiform, and thunniform fish, respectively, are attached to the posterior part of the robotic fish. The swimming test under 300 $V_{pp}$ input with 0.6 Hz to 1.2 Hz frequency was conducted to investigate effect of tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. At the frequency of 0.9 Hz, the maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for fish robots with ostraciiform, subcarangiform carangiform and thunniform caudal fins, respectively. The Strouhal number, which means the ratio between unsteady force and inertia force, or a measure of thrust efficiency, was calculated in order to examine thrust performance of the present biomimetic fish robot. The calculated Strouhal numbers show that the present robotic fish does not fall into the performance range of a fast swimming robot.

Design of a Humanoid Robot Hand by Mimicking Human Hand's Motion and Appearance (인간손의 동작과 모양을 모방한 휴머노이드 로봇손 설계)

  • Ahn, Sang-Ik;Oh, Yong-Hwan;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • A specialized anthropomorphic robot hand which can be attached to the biped humanoid robot MAHRU-R in KIST, has been developed. This built-in type hand consists of three fingers and a thumb with total four DOF(Degrees of Freedom) where the finger mechanism is well designed for grasping typical objects stably in human's daily activities such as sphere and cylinder shaped objects. The restriction of possible motions and the limitation of grasping objects arising from the reduction of DOF can be overcome by reflecting a typical human finger's motion profile to the design procedure. As a result, the developed hand can imitate not only human hand's shape but also its motion in a compact and efficient manner. Also this novel robot hand can perform various human hand gestures naturally and grasp normal objects with both power and precision grasping capability.

Enhancement of 4 Bar Parallelogram Linkage for a Medical Bed (의료용 침대를 위한 평행 4절 링크의 개선)

  • Lee, Youngdae;Kim, Changyoung;Choi, Moonsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.515-520
    • /
    • 2020
  • The design and actual implementation of the four-bar parallel link was studied in the paper. The parallel four-section link is widely used as a basic kinematic mechanism for transmitting the rotation of one axis to the rotational motion of the other axis. However, the parallel 4 link has a problem that phase reversal occurs at the turning point during the movement. In order to prevent the link reversal, it is known that a double parallelogram-type link is formed by attaching an additional phase reversal suppression link with an offset. However, as a result of the actual fabrication experiment, the movement is not smooth at the transition point. In order to solve this problem, in this study, a link for smooth movement is added in addition to a link that provides an offset to prevent phase reversal, so that the phase reversal does not occur at a specific point when the driven shaft rotates along the drive shaft. The test result confirms the validity of our suggestion.

Terrain Exploration Using a Mobile Robot with Stereo Cameras (스테레오 카메라를 장착한 주행 로봇의 야외 탐사)

  • Yoon, Suk-June;Park, Sung-Kee;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.766-771
    • /
    • 2004
  • In this paper, new exploration mobile robot is presented. This mobile robot, called Robhaz-6W, is able to overcome hazardous terrains, recognize three dimensional terrain information and generate a path toward the destination by itself. We develop the passive four bar linkage mechanism adoptable to such terrain without any active control and the real time stereo vision system for obstacle avoidance, a remote control and a path planning method. And the geometrical information is transmitted to the operator in the remote site via wireless LAN equipment. And finally, experimental results for the passive mechanism, the real time stereo vision system, the path planning are reported, which show the versatility of the proposed mobile robot system to carry out some tasks.

  • PDF

A Study on the Quasi-static Overturning and Derailment Safety of Tilting Train (틸팅차량의 준 정적상태 전복 안전성과 탈선 안전성에 관한 연구)

  • Souh, Byung-Yil;Lee, Byung-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.537-545
    • /
    • 2010
  • This study presents a method to evaluate overturning safety and derailment safety of korean tilting train using kinematic analysis of four-bar linkage tilting mechanism. The safety is evaluated considering tilting vehicle body CG displacement. The design sensitivity for stable and safe maximum speed is evaluated around current korean tilting train design data. The current design shows minimum center of gravity displacement. Higher speed can be achieved with larger center of gravity displacement.

Synthesis of a Four-Bar Linkage to Generate a Prescribed Coupler Curve (연간궤적(連稈軌跡)을 이용(利用)한 4링크기구(機構)의 합성(合成))

  • Kim, Hyoung Jun;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.8-17
    • /
    • 1983
  • 특수(特殊)한 기능(機能)을 수행(遂行)하기 위한 4링크 기구(機構)의 설계(設計)에서는 링크의 연간궤적(連稈軌跡)이 중요(重要)한 설계조건(設計條件)이 된다. 이앙기(移秧機)의 이식기구(移植機構)나 바인던의 방출(放出)암은 모두 4링크 기구(機構)를 이용(利用)하여 작업수행(作業遂行)에 필요(必要)한 연간궤적(連稈軌跡)을 얻고 있는 것이다. 필요(必要)한 연간궤적(連稈軌跡)을 얻기위한 4링크 기구(機構)의 합성(合成)은 도해적(圖解的), 해석적(解析的) 방법(方法)을 통(通)하여 많은 연구(硏究)가 이루어져 왔으며 최근(最近)에는 콤퓨터를 이용(利用)한 기구합성(機構合成)에 대(對)한 연구(硏究)가 활발하게 이루어지고 있다. 본(本) 연구(硏究)에서는 연간궤적상(連稈軌跡上)의 점(點)들을 이용(利用)하여 주어진 연간궤적(連稈軌跡)을 얻기 위한 4링크 기구(機構)의 합성(合成)에 대(對)한 새로운 방법(方法)을 개발(開發)하고 이 방법(方法)을 콤퓨터 프로그래밍하여 주어진 연간궤적(連稈軌跡)과 콤퓨터로 합성(合成)한 4링크 기구(機構)의 연간궤적(連稈軌跡)을 비교(比較)검토 하였다.

  • PDF

Development of Jumping Mechanism for Small Reconnaissance Robot (소형 정찰 로봇의 도약 메커니즘 개발)

  • Tae, Won-Seok;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.563-570
    • /
    • 2009
  • In the future, most military activities will be replaced by robots. Because of many dangerous factors in battlefield, reconnaissance should be performed by robot. Reconnaissance robot should be small for not being detected, be light and simple structure for personal portability and overcome unexpected rough terrain for mission completion. In case of small and light robot, it can't get enough friction force for movement. Therefore small reconnaissance robot need jumping function for movement. In this paper we proposed a biologically inspired jumping mechanism. And we adjusted moment and jumping angle by using four bar linkage, especially varying coupler length.

Development of a 5 DOF Manipulator for Weight Handling based on Counterbalance Mechanism (기계식 중력보상 기반의 중량물 취급용 5자유도 로봇 머니퓰레이터의 개발)

  • Song, Seung Woo;Song, Jae Bok
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.242-247
    • /
    • 2016
  • A robot manipulator handling a heavy weight requires high-capacity motors and speed reducers, which increases the cost of a robot and the risk of injury when a human worker is in collaboration with a robot. To cope with this problem, we propose a collaborative manipulator equipped with a counterbalance mechanism which compensates mechanically for a gravitational torque due to the robot mass. The prototype of the manipulator was designed on the basis of a four-bar linkage structure which contains active and passive pitch joints. Experimental performance evaluation shows that the proposed robot works effectively as a collaborative robot.