• 제목/요약/키워드: four-bar link mechanism

검색결과 31건 처리시간 0.03초

볼나사 구동기를 갖는 로봇다리의 모델링 (Modeling of the Robot Leg Driven by the Ball Screw Actuator)

  • 최형식;이호식;박용헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.583-586
    • /
    • 2000
  • The conventional actuators with the speed reducer had weakness in supporting the weight of the body and leg itself. To overcome this, a new four bar link mechanism actuated by the ball screw was proposed. The four bar mechanism has higher strength and gear ratio than the conventional actuator to actutate the leg of the biped robot. One leg was designed to have ankle, thigh, and hip joints. The kinematics and dynamics of one leg with four bar link mechanism was analyzed using Euler-Lagrange approach. The dynamics of one leg was expressed in the ball strew frame.

  • PDF

PSO를 이용한 테오얀센 기반의 보행로봇 다리설계 (Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO)

  • 김선욱;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.660-666
    • /
    • 2011
  • 본 논문에서는 절 기구(bar linkage)형 다관절 보행로봇(multi-legged walking robot)의 최적다리 길이선정을 위하여 입자군집 최적화(PSO: Particle Swarm Optimization) 기법을 사용하였다. PSO 알고리즘을 적용하기 위해서 제안한 보행로봇의 기구학적인 해석이 필요하다. 게 로봇은 4절 링크 이론(four-bar linkage)과 얀센 메커니즘(Jansen mechanism)을 기반으로 설계되었다. 이러한 기구학적인 해석을 바탕으로 로봇의 보행보폭을 정의한다. 그리고 PSO의 학습 및 군집 특성을 이용하여 최대의 보행보폭을 가지는 10개(EA)의 링크(link)길이를 구한다. 시뮬레이션을 통해 각 링크의 위치와 다리 끝단의 보행보폭을 확인할 수 있다. 결과로서, PSO기법이 절 기구형 다관절 보행로봇의 최적다리 길이 선정에 효율적임을 보여 준다.

폐체인 구조 로봇 머니퓰레이터의 슬라이딩모드 제어 (A Sliding Mode Control for a Robot Manipulator with closed-chain Structure)

  • 최형식;백창열;황이철;김무경
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.98-108
    • /
    • 2005
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To improve this, a new type of robot actuator based on the four-bar-link mechanism driven by the ball screw was constructed. Also, a new type of revolute robot manipulator composed of the developed actuators was developed. But, modelling errors occur due to the off-set from the nominal model since the exact modeling of the complex inertia variation of the four-bar-link actuator is very difficult. To control the proposed robot along the prescribed trajectory, a sliding mode control algorithm was applied with compensation function for the modeling errors. To show performance of the proposed controller, a computer simulation was performed, and its results was presented.

얀센 메커니즘을 이용한 보행로봇의 최적설계에 관한 연구 (A Research about optimum design of the walking robot using Jansen mechanism)

  • ;지형근
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.384-388
    • /
    • 2016
  • This paper proposed a m.Sketch to search the optimal link lengths for a legged walking robot. In order to apply the m.Sketch for the proposed, set the design parameters of the constraints and use the m.Skecth to get optimal GL(Groud Length) and GAC(Ground Angle Coefficient). The legged robot designed based on four-bar linkage theory and Theo Jansen mechanism. The stride length of the legged walking robot was defined based on the proposed kinematic analysis. Use the Edison Design m.Sketch simulate and find the optimal link length having the best of the Ground Length (GL) and Ground Angle Coefficient(GAC). And use these length implemented the Theo Jansen mechanism both in Science box parts and acrylic. In addition to the further expansion of the legs to reach the goaltranslating heavy objects or person.

  • PDF

공차와 틈새를 고려한 4절연쇄기구의 최적설계 (Optimal Design of Four-bar Mechanism in consideration of Tolerances and Clearances)

  • 김호룡
    • 한국정밀공학회지
    • /
    • 제2권3호
    • /
    • pp.70-76
    • /
    • 1985
  • A four-bar mechanism in consideration of the tolerances on link lengths and the clearances in joints is optimally designed by the method of stochastic analysis. The random nature of clearances and tolerances establishes a stochastic optimization design equation in which the parameters in the equation are described by random variables. In order to solve the design equation, the stochastic problem is converted into an equivalent deterministic one. The synthesis of four-bar mechanism for minimum mechanical and structural errors is carried out by the optimization techni- ques using Chebyshev spacing of precision points. By the results from the synthesized mechanism, the generated and desired motions are examined.

  • PDF

Kineto-Elasto Static and Dynamic Responses of a Fully Elastic Linked, Four-bar Mechanism

  • 신중호
    • 한국기계연구소 소보
    • /
    • 통권17호
    • /
    • pp.99-109
    • /
    • 1987
  • Mechanisms with fully elastic members must consider both inertial forces due to the rigid motion of mechanisms and due to the elastic vibration of links. The main objectives of the kineto-elasto static and dynamic analyses are to calculate the quasi-static and the time-domain responses, respectively. An iterative transfer matrix method is used for a four-bar, fully elastic linked mechanism. Houbolt direct integration scheme is incorporated for the inertial effects due to the elastic link vibration. The analytical results are compared with the experimental responses and both responses show in good agreement.

  • PDF

폐체인 구조의 새로운 다관절 로봇 매니퓰레이터 개발 (Development of a New Robot Manipulator Driven by the Closed-chain Actuator)

  • 최형식;백창열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.238-245
    • /
    • 2003
  • To overcome the weakness in the load capacity of conventional robot manipulators actuated by motors with the speed reducer such as the harmonic driver, we proposed a new closed-chain type of the robot actuator which is composed of the four-bar-link mechanism driven by the ball screw. The robot manipulator is revolute-jointed and composed of four axes. The base axis is actuated by the lineal actuator such as the ball screw, and the others are actuated by the proposed actuator. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates and then they are mapped into the sliding coordinates of the ball screw. We performed fundamental tests on the structure of the robot.

폐체인 구조의 다관절 로봇 매니플레이터의 개발 (Development of Revolute joint Robot Manipulator with closed-chain structure)

  • 오정민;백창열;최형식;김명훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.540-543
    • /
    • 2002
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, we proposed and constructed a new type of the robot actuator which is four-bar-link mechanism driven by the ball screw. We developed a new type of a revolute-jointed robot manipulator composed of four axes. The base axis is actuated with conventional speed reducer, but the others are actuated by the proposed actuators. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates, and then they are mapped into the sliding coordinates of the ball screw. The structure specifications of the manipulator shown.

  • PDF

불가사리 채집용 4절 링크 매니퓰레이터의 최적 설계 (Optimal Design of a Four-bar Linkage Manipulator for Starfish-Capture Robot Platform)

  • 김지훈;진상록;김종원;서태원;김종원
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.961-968
    • /
    • 2013
  • In this paper, we propose an optimal design for starfish capturing manipulator module with four-bar linkage mechanism. A tool link with compliance is attached on the four-bar linkage, and the tool repeats detaching starfish from the ground and putting it into the storage box. Since the tool is not rigid and the manipulator is operating underwater, the trajectory of the tool tip is determined by its dynamics as well as kinematics. We analyzed the trajectory of the manipulator tool tip by quasi-static analysis considering both kinematics and dynamics. In optimization, the lengths of each link and the tool stiffness are considered as control variables. To maximize the capturing ability, capturing stroke of the four-bar manipulator trajectory is maximized. Reaction force and reaction moment, and other kinematic constraints were considered as inequality constraints.