• Title/Summary/Keyword: four square theorem

Search Result 7, Processing Time 0.018 seconds

A LOWER BOUND FOR THE NUMBER OF SQUARES WHOSE SUM REPRESENTS INTEGRAL QUADRATIC FORMS

  • Kim, Myung-Hwan;Oh, Byeong-Kweon
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.651-655
    • /
    • 1996
  • Lagrange's famous Four Square Theorem [L] says that every positive integer can be represented by the sum of four squares. This marvelous theorem was generalized by Mordell [M1] and Ko [K1] as follows : every positive definite integral quadratic form of two, three, four, and five variables is represented by the sum of five, six, seven, and eight squares, respectively. And they tried to extend this to positive definite integral quadratic forms of six or more variables.

  • PDF

REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES

  • Kim, Byeong Moon
    • Korean Journal of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • In this paper, we determine all positive integers which cannot be represented by a sum of four squares at least 9, and prove that for each N, there are nitely many positive integers which cannot be represented by a sum of four squares at least $N^2$ except $2{\cdot}4^m$, $6{\cdot}4^m$ and $14{\cdot}4^m$ for $m{\geq}0$. As a consequence, we prove that for each $k{\geq} 5$ there are nitely many positive integers which cannot be represented by a sum of k squares at least $N^2$.

Square and Cube Root Algorithms in Finite Field and Their Applications (유한체상의 제곱근과 세제곱근을 찾는 알고리즘과 그 응용)

  • Cho, Gook Hwa;Ha, Eunhye;Koo, Namhun;Kwon, Soonhak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1031-1037
    • /
    • 2012
  • We study an algorithm that can efficiently find square roots and cube roots by modifying Tonelli-Shanks algorithm, which has an application in Number Field Sieve (NFS). The Number Field Sieve, the fastest known factoring algorithm, is a powerful tool for factoring very large integer. NFS first chooses two polynomials having common root modulo N, and it consists of the following four major steps; 1. Polynomial Selection 2. Sieving 3. Matrix 4. Square Root. The last step of NFS needs the process of square root computation in Number Field, which can be computed via square root algorithm over finite field.

Bicubic Splines in Problems of Modeling of Multidimensional Signals

  • Bahramov, Sayfiddin;Jovliev, Sanjar
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.420-423
    • /
    • 2011
  • The paper is devoted to problem of spline modeling of multidimensional signals. A new method of nodes location for curves and surfaces computer construction in multidimensional spaces by means of B-splines is presented. The criteria are which links a square-mean error caused by high frequency spline distortions and approximation intervals is determined and necessary theorem is proved. In this method use a theory of entire multidimensional spectra and may be extended for the spaces of three, four and more variables.

Formulation of the Panel Method with Linearly Distributed Dipole Strength on Triangular Panels (삼각형 패널 상에 선형적으로 분포된 다이폴 강도를 갖는 패널법의 정식화)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.114-123
    • /
    • 2020
  • A high-order potential-based panel method based on Green's theorem, with piecewise-linear dipole strength on triangular panels, is formulated for the analysis of potential flow around a three-dimensional wing. Previous low-order panel methods adopt square panels with piecewise-constant dipole strength, which results in inherent errors. Square panels can not represent a high curvature lifting body, such as propellers, since the four vertices of the square panel do not locate at the same flat plane. Moreover the piecewise-constant dipole strength induces inevitable errors due to the steps in dipole strength between adjacent panels. In this paper a high-order panel method is formulated to improve accuracy by adopting a piecewise linear dipole strength on triangular panels. Firstly, the square panels are replaced by triangular panels in order to increase the geometric accuracy in representing the shape of the object with large curvature. Next, the step difference of the dipole strength between adjacent panels is removed by adopting piecewise-linear dipole strength on the triangular panels. The calculated results by the present method is compared with analytical ones for simple non-lifting geometries, such as ellipsoid. The results for an elliptic wing with zero thickness at finite angle of attack are compared with Jordan's results. The comparison shows reasonable agrements for the both lifting and non-lifting bodies.

Application of Spectral Properties of Basic Splines in Problems of Processing of Multivariate Signals

  • Zaynidinov, H.N.;Yun, Tae-Soo;Chae, Eel-Jin
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.26-29
    • /
    • 2007
  • The paper is devoted to problem of spline approximation. A new method of nodes location for curves and surfaces computer construction in multidimensional spaces by means of B-splines is presented. The criteria are which links a square-mean error caused by high frequency spline distortions and approximation intervals is determined and necessary theorem is proved. In this method use a theory of entire multidimensional spectra and may be extended for the spaces of three, four and more variables. Future work: application area such as digital contents like animation, game graphic.