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ON THE FOUR SQUARE THEOREM
By JungHwWAN OH AND JEAYOUNG HAN

Introduction.

In this paper we shall consider a particular subring, Hurwitz ring, of real
quaternions which, in all ways except for its lack of the commutativity, will
look like a Euclidean ring. We show that any element in Hurwitz ring has an
associate with non-integral coordinates, and for any prime integer p, there is
an element r in Hurwitz ring such that the norm of r is equal to p. We ‘also
show that any prime number p can be expressad as a sum of squares of four
integers.

Consequently we will prove that every positive integer can be expressed as a
sum of squares of four integers.

1. The norm and adjoint of real quaternions.

DEFINITION 1.1, Let Q be ring of real quaternions.
For a=a,+aji+asj+ask is @, the adjoint of a, Cenoted by a&*, is defined
by a*=ay—ai—asj—ask.

DEFINITION 1.2. The norm of @ in @, denoted by N(a), is defined by N(a)

=aq*

Note that for any real number g, N{e)=a? and if 20, then z!=
z¥/N(z).

The following Lemma which is essential to the pressnt paper will be briefly
stated without proof.

LevwMa, (@) The adjoint in Q satisfies
(zy)*=y*z*, for all z,y in Q.
(6) For all z,y in Q
N(zy)=N(z)N(y).

2. Integral quaternions.

Now we shall introduce the Hurwitz ring of integral quaternions.
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DEFINITION 2.1, Let p=%(1+i+j+k) and H={mop+mi+mqj+msk; mo, my,

ms, ms are in Z}. The set H is called Hurwitz ring of integral quaternions.
The following Lemma is obvious.

LEMMA 2.1, (@) z* is in H, for dll = in H,
(®) N(z) is a positive integer, for all nonzero x in H,

DEFINITION 2.2. An element ¢ in H is called a unity if ¢7! is in H.

LEMMA 2.2. The element a in H is a unity if and only if the norm of a is
1.

Proof. Suppose a! is in H. Then N(a) and N(a™!) are positive integers,
and N(@N(a')=1, by Lemma 2.1. Hence N{g)=1.

Conversely, if a is in H and N{(g)=1, then N(a)=aa*=1, and a !=a* in
H,

DEFINITION 2.3. The element ae or ea is called an associate of @ if ¢ is a
unity in H.
THEOREM 1. If a is in H and N{a) is an odd integer, then at least one of

its associates has non—integral coordinates.

Proof. Suppose N(a) is an odd, and e=H has ‘integral coordinates, then
we have a= (by+bii+baj+bsk) + (co+cii+coj+esk) =s-+r so that &'s are all
even integers and each of ¢, ¢y, ¢2,¢5 has value 0 or 1. Then there are only
two cases : one of ¢’s is equal to 1 and the others are all zero or three of

them have value 1 and the other is equal to zero.
In the case r=1+i+j, we have r=(14i+j+2) —% and re=2—ke, where

e=%(1—i— j—k). Then the associate of @, ee=se+2—ke, has non-integral
coordinates. Similarly, the other cases can he shown.

LEMMA 2.3. If @« is in H and m is a positive integer, then there is o in H
such that N{a—am)<N(m).

Proof. Suppose that a=top+tii+2.7+2t:k
and T=zop+ 218+ 227 + 23k,

where z’s are integers yet to be determined,
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then

a—mz=%t0(1+i+j+k) +t1i+t2j+t3k——%—mxo(l+i+j+la)
—mxyi—mxsj—mask

=% (to—mzp) + % (to+2t1—m (xg+22)) )1

+ % (to+2t—m (xg+229) ) j+ —é— (tg+2t3—m (xo-+223) ) B,
We can choose xg, 21, 22, T3 in succession so that these have absolute values not

exceeding %m, %m, %m,%m ; and then N(a-mz)<N{(m).

LEMMA 2.4, If a is in H and b0 in H, then there are ¢ and d such that
a=cb+d, N(d)<N().

Proof. Let k=ab* and m=0bb*, then there is ¢ in H such that N{(t—mc)
<N(m). Thus we have N(ab*—cbd*)=N(a—cb)N(®*)<NB)N(*). Since
N(b*) is positive integer, N{a—cb)<N(b). Taking d=a—ch, we have a=cb
+d, where N(d)<N(b).

THEOREM 2. Every left ideal L of H is a principal left ideal.

Proof. If L=(0), there is nothing to prove, merely put z=0.

Assume that L has non-zero elements. There is an element #=0in L whose
norm is minimal over the nonzero elements of L. For this », if ¥ is in L,
there is r=y—aucsL and N(r)<N(u), by Lemma 2.4. Therefore y—zu=0,
and y=zxu. Hence L is the principal left ideal.

DEFINITION 2.4. For a and 4 in H, and b have a greatest common right di-
visor d={(a, b) if it satisfies the following conditions;

(a) d is right divisor of a and b,

(b) every right divisor of @ and & is right divisor of d.

LEMMA 2.5. a and b have a greatest right common divisor d, for all a and
b in H.

Proof. let S be the set of all elements xa-+yb, where £ and y are in H.
Then S is a left ideal, and so § is a principal ideal. Since 2 znd % are both
in 8, d is a common right divisor of @ and 5, and any such divisor of 2 and

b is also a right divisor of every element of S. Therefore, d is the greatest
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common right divisor of a and &.
THEOREM 3. For a in H and b=m,a positive integer, there arec x and y in
H such that za-+yb=1 if and only if (N(a), N(b))=1.

Proof. Suppose that there are z and y in H such that za+yb=1.
Then,

N(za) =N(1—by) =(1—my) 1—my*) =1—my—my*+m*N(y),
N(z)N(e) =1—my—my*+m?N(y).

Hence (N{(a), N(&))=1.

Conversely, if there ‘are d; and d, such that a=d,d and b=dsd, then N(d)
is a common divisor of N(a) and N(6). That is (N(a), N(®))=N(d). Con-
sequently d is a unity. There are x and y in H such that za+by=1.

DEFINITION 2.5. Nonzero element ¢ in H is called a prime in H if a=ab
implies that @ or & is a unity.

LeMMA 2.6. Anmy prime integer p can not be a prime in H.

Proof. If p=2, then 2=(1+i)(1—i) is not prime in H.
Suppose p is an odd prime, then there are integers ¢ and & such that

0<a,5<p, 1+a®+8=0 (mod p).

Let s=1—ai—5j, then N(s$)=1+a?+4=0 (mod p) and (N(s),p)>1. By
Theorem 3, s and p have a common right divisor d which is not a unity. For
s is not a unity, we can have s=d\d and p=d.d. If ds is a unity, d is an
associate of p and s=did>"'p. In this case, p divides all the coordinates of a,
but it is impossible. Hence p=dsd, where neither d; nor d is a unity; that
is, p is not a prime,

THEOREM 4. The norm of r is a prime integer if and only if r is a prime
in H.

Proof. Let N(r) be a prime integer and r=ab for some a and 4 in H, then
N(@N(®) =N(r) and N{a) or N(b) is 1.
Hence r is a prime in H.

On the other hand, suppose that r in H is a prime and let a prime integer
p be a divisor of N(r). By Theorem 3, r and p have a common right divisor
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7 which is not a unity.

Since r is a prime in H,7 is an associate of  and N(7)=N({). Also p’=
x7 for some x in H and p=N{(z)N#), so that Nr) is 1 or p. f N()
were 1, then » would be an associate of r and 7, so that p is prime in
H. But it is impossible, by Lemma 2. Hence the norm of r is equal to prime

integer 2.
3. The feur-square theorem,

We now have determined enough of the structures of of H. We shall introd-
uce the classical theorems of Lagrange and FEuler to use them effectively to
study properties of the integers.

LEMMA 3.1. If 2a=m}+m}+m}+m:, where my, m,, mo, ms are integers, then

2 2 .
a=ng+ni-+ni-+ni, for some integer ny, ny,nz, N3

LEMMA 3.2. The product of two integers each a sum of four integral squares
is again a sum of four integral squares..

THEOREM 5. If p is an odd prime integer, then 4p can be expressed as a sum
of four integral squares. Furthermore p can be expressed as a sum of four

integral squares.

Proof. Since p is an odd prime integer, we have p=ab, for some ¢ and &
in H, and N(a)=N(b)=p, by Theorem 4. We can also select an associate o’
of a whose coordinates are halves of odd integers, by Theorem 1.

p=N@=N@) =t +L)+ (6 +2)+ (o +2)"+ (65 + L)
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