• Title/Summary/Keyword: four oak species

Search Result 50, Processing Time 0.026 seconds

The Characteristics of Early Changes in Vegetation Structure by Forest Cover Type after Forest Fire Damage in Uljin region (울진지역 산불피해지의 산림피복형별 식생구조의 초기 변화 특성)

  • Kim, Tae-Woon;Han, Young-Sub;Lee, Sung-Ho;Lim, Chae-young;Hur, Tae-chul;Im, Chang-Kyun;Gil, Min-Kyung;Park, Joon-hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.1-18
    • /
    • 2024
  • The study aims to establish a direction for forest ecological restoration by classifying forest types and understanding the ecological characteristics of the Uljin forest area damaged by a large fire in 2022. Hierarchical cluster analysis and indicator species analysis were conducted on 78 survey plots located in the forest fire-affected area, and four forest cover types were derived: P. densiflora pure forests, P. densiflora dominant forests, mixed broad-leaved forests, and Q. variabilis dominant forests. As a result of visually comparing changes in forest types before and after forest fire damage, by classifying data according to whether or not upper dead trees are included, it was confirmed that pine forests, which have a high proportion of pine trees, spread widely due to forest fire damage. However, broad-leaved mixed forests and oyster oak dominant forests showed characteristics of maintaining concentration, indicating that pine forests were severely damaged. As a result of the important value analysis, during the process of natural recovery after a forest fire, the species that appear early in the lower layer are the sprouts of existing species such as Quercus mongolica Fisch. ex Ledeb., Quercus variabilis Blume, Fraxinus sieboldiana Blume, Rhododendron mucronulatum Turcz. The distribution of diameter at breast height by forest cover type showed that among areas with extreme forest fire damage, the proportion of dead trees was relatively high and structural changes were large in P. densiflora pure forests and P. densiflora dominant forests where pine trees had a high distribution ratio. However, if continuous monitoring is carried out in the future with reference to the results of this study and plant data is collected and analyzed from a mid- to long-term perspective, it is believed that it will be used as useful data to promote forest ecological restoration projects in forest fire-affected areas.

Ecological Characteristics and Vegetation Structure Analysis of Eurya Japonica Community -Focusing on Busan Metropolitan City- (사스레피나무 군락의 생태적 특성 및 식생구조 분석 -부산광역시를 중심으로-)

  • Jang, Jung-Eun;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • The purpose of this study is to investigate the ecological characteristics and vegetation structures of Eurya japonica in Busan. As a result of the TWINSPAN and DCA analysis, 89 plots of 100㎡ each were divided into 3 communities: Quercus serrata-Pinus densiflora-E. japonica community, Pinus thunbergii-E. japonica community, and P. thunbergii-Camellia japonica community. Community I consisted of the Quercus serrata-Pinus densiflora-E. japonica which was mainly located in the high altitude inland. While Q. serrata and P. densiflora competed in the tree layer, the dominant species of the understory layer was E. japonica. Since Carpinus tschonoskii, one of the climax species, was distributed evenly from shrub to tree layers, it was likely that deciduous oak trees or Carpinus tschonoskii would become dominant species in community I. In community I, E. japonica was found in higher altitude than the other evergreen broad-leaved tree and was expected to maintain their tree vigor even if the vegetation structure is converted into the deciduous forest. Community II, the P. thunbergii-E. japonica community, was predicted to maintain its tree vigor unless there were unexpected disturbance factors. Community III, consisting of P. thunbergii-C. japonica and located in Dongbaek Island, was under artificial management. In community III, P. thunbergii was the only species in the tree layer, while C. japonica was predominant in the understory layer. E. japonica and various evergreen broad-leaved tree species were present in the understory layer and shrub layer, which were unmanaged areas. Therefore, it is expected that unless C. japonica is continuously managed, E. japonica is likely to become the dominant species. There were also various evergreen broad-leaved species, such as Machilus thunbergii and Pittosporum tobira, present in the shrub layer. If the temperature continues to rise, the habitat is expected to become evergreen broad-leaved forests in the future as P. thunbergii community declines. The result of Pearson's correlation coefficient analysis of E. japonica and species appearing in 89 plots showed that 9 species were had a statistically significant relationship (p<0.05). Four species, including P. tobira and Q. dentata, had a positive correlation. Five species had a negative correlation, and C. japonica, which had the same ecological position as E. japonica, showed the most negative correlation at -0.384.

Xylella fastidiosa in Europe: From the Introduction to the Current Status

  • Vojislav, Trkulja;Andrija, Tomic;Renata, Ilicic;Milos, Nozinic;Tatjana Popovic, Milovanovic
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.551-571
    • /
    • 2022
  • Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.

Variation of Stomatal Traits of Natural Population of Quercus spp. (참나무 천연집단(天然集團)의 기공형질변이(氣孔形質變異))

  • Kim, Chi Moon;Kwon, Ki Won;Moon, Heung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.82-94
    • /
    • 1984
  • The variation of stomatal density and stomatal length of four species of oaks was studied for the purpose of examining the differences among populations and among individual trees within population. Nine populations of Quercus mongolica, four populations of Q. serrata and Q. variabilis respectively, and three populations of Q. acutissima were selected in the natural stands of oaks distributed through the whole country. Twelve leaves were sampled from each of 20 trees from each population. The length of 20 stomata and ten replications of stomatal density were measured from collodion replicas of each leaf under a microscope. Average stomatal densities and lengths ranged through $600-1000/mm^2$ and $19-26{\mu}m$ respectively in all of the species studied. The stomatal densities and lengths presented significant differences statistically at the level of 1 or 5% among populations and among individual trees within population in all the species. Quercus mongolica, especially, showed large variation among populations, while Q. variabilis did very narrow variation compared to the other species. The coefficients of variation of stomatal densities and lengths among individual trees within population exhibited small values of 3.7-12.0% and 1.4-5.3% respectively in all the populations of the species. The average stomatal densities of Q. mongolica showed statistically significant correlation of multiple correlation coefficient of $R_{df{\cdot}2.6}=0.868^*$ and multiple regression equation of $Y=0.041X_1(G.M.T.S.)+0.489X_2(G.M.H.S.)+22.37$ with the sum of growing season mean daily temperature and the sum of growing season mean daily humidity of the stand studied. However the average stomatal lengths showed no relation with the same meteological variables. The figures of frequency distribution of the measurements of leaves or the mean values of individual trees did not show normal distribution curves in some populations. The curves, as well as the results of ANOVA, exhibited the differences among populations.

  • PDF

Analysis of Vegetation Structure on the 2nd Old Trail in Mudeungsan National Park (무등산국립공원 옛길 2구간의 식생구조분석)

  • Yu, Seung-Bong;Lee, Sang-Cheol;Kang, Hyun-Mi;Kim, Young-Seon;Shin, Hae-Seon;Jang, Jung-Eun;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.224-234
    • /
    • 2020
  • This study was conducted to investigate the vegetation structure of Zone 2 of Mudeungsan National Park Old Trail. A total of 60 survey plots were installed to survey the forest structure, and TWINSPAN and DCA analysis classified them into 5 communities. The community I was classified into Deciduous broad-leaf tree, II into Pinus densiflora-Quercus serrata, III into Quercus serrata, IV into Lindera erythrocarpa, and V into Quercus mongolica. The grouped communities showed some differences in species compositions according to elevation. In the four communities except for community IV, Styrax japonicus and Sasa borealis formed a dominant population in understory layers and in shrub layers, respectively, and the current community forms are expected to be maintained. Monitoring of vegetation succession of lower vegetation after temporary flowering and withering in the ridges developed in the shrub layers in communities II through IV is required. In the long-term aspect, the competition between the pine tree and oak tree communities requires observation of a decrease in the power of the pine tree community. Mudeungsan National Park's Old Trail ecologically valuable as it has a vegetation structure that is distinctively classified according to altitude and is a habitat of Lindera sericea, the flagship species of Mudeungsan National Park. It means that the excellent forest ecosystem of Old Trail must be conserved through sustainable utilization.

Vegetation of Moojechi Moor in Ulsan: Syntaxonomy and Syndynamics (울산 무제치늪의 식생: 군락분류와 군락동태)

  • 김종원;김중훈
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.281-287
    • /
    • 2003
  • We present the first analysis of moor vegetation on the Moojechi of Ulsan including syntaxonomy and syndynamics. We classified plant communities according to the Braun-Blanquet approach. In order to better understand ecological alteration processes and changing species compositions along successional gradients we also examined synecological differences using Principal Coordinate Analysis(PCoA) in terms of moisture gradient, species richness, and community structure. Classification resulted in one association and five plant communities occupying distinct moor habitats: Hypericum laxum-Eleocharis acicularis for. longiseta community, Drosera rotundifolia-Eleocharis congesta community, Platanthero-Molinietum japonicae ass. nova hoc loco, Molinia japonica-Alnus japonica community, Miscanthus sinensis-Pinus densiflora community, and Convallaria keiskei-Quercus serrata community. Due to synecological correspondences and floristic similarities in supraregional perspective, Platanthero-Molinietum can be assigned to existing higher syntaxonomic units of Molinion and Molinietalia in Braun-Blanquet system, established in Japan. We propose to extend their range and designate the new class Molinietea japonicae representative to the intermediate moor (Zwischenmoor) vegetation in Northeast Asia. PCoA resulted in four types showing a sequencess of succession: Needle spike-rush type, moor-grass type (incl. alder forest type), eulalia type, and oak forest type. A combination of edaphic conditions (soil eutrphication and soil moisture) and hydrologic patterns of moor ecosystem related to topography, occurring as result of external geophysical forces, controls inter alia spatial patterns and floristic compositions of moor plant communities.

Ecophysiological Studies on the Water Relations of Economic Tree Species - Temporal Changes of Stomatal Responses to Soil Moisture Regimes and Exogenous Abscisic Acid in Oaks and Ash - (주요 경제 수종의 수분 특성에 관한 생리생태학적 연구 - 토양수분 조건 및 ABA 처리에 따른 참나무류와 물푸레나무 기공의 시계열적인 변화 반응 -)

  • Kwon, Ki Won;Lee, Jeoung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.410-423
    • /
    • 1994
  • Seasonal and diurnal changes of stomatal diffusive resistance(S.D.R.) and transpiration rate(T.R.) were investigated for determining the ecophysiological water relations of economic tree species subjected to chronic water stress or exogenous abscisic acid treatment. Four species of oaks including Quercus serrata, Q. mongolica. Q. acutissima, and Q. variabilis were used as the experimental materials and also Fraxinus rhynchophylla was studied together with oaks. Stomatal diffusive resistances were repeatedly measured on the containerized 1-0 year seedlings subjected to two kinds of soil moisture regime (wet and dry) in June, August, and September by LI-1600 Steady State Porometer of LI-Cor, Inc.. Exogenous abscisic acid (ABA) solutions of 0.5 mM and 0.05 mM in July and August, respectively, were absorbed into shoots cut from the containerized seedlings for determining their effects on stomatal behavior and transpiration. Most of measurements in stomatal diffusive resistance maintained about 5 s/cm in the morning after sunrise despite of different treatments. But the values fluctuated frequently to high level above 20 s/cm through the afternoon until sunset in the seedlings subjected to dry soil moisture regime. Despite of various treatments and environmental conditions, stomatal diffusive resistances of Q. variabilis were more stable than those of Q. serrata or Q. acutissima. Their values of F. rhynchophylla changed more irregularly in comparison with those of oak species. Exogenous abscisic acid absorbed into shoots cut from seedlings increased stomatal diffusive resistance obviously in most of the species studied. The stomatal responses to abscisic acid treatment were more sensitive in July especially in Q. serrata than in Q. variabilis and Q. acutissima. But the effects of ABA treatment were presented more remarkably in Q. acutissima in August. The responses to abscisic acid were not certain in F. rhynchophylla because of their various fluctuation patterns.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Ecological Niche of Quercus acutissima and Quercus variabilis (상수리나무와 굴참나무의 생태적 지위에 관한 연구)

  • Kim, Hae-Ran;Jeong, Heon-Mo;Kim, Hyea-Ju;You, Young-Han
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • In Korea, Quercus acutissima distributed in good condition with high nutrients and moisture content, but Quercus variabilis in dry soil or rock habitate. In order to understand this ecological distribution of Q. acutissima and Q. variabilis, we cultivated the seedlings of two oak species treated with light, soil moisture and nutrient gradients each four level, from May to October in glass house. Then we measured the ecological niche breadth and niche overlap of the two species, and analyzed the relationship of competition using cluster analysis and PCA ordination. Ecological niche breadths of Q. acutissima under moisture and nutrient treatments were slightly wider than those under light one. Among 14 characters measured, 6 characters related with length items were wider in all the environmental treatments, but 8 characters connected with weight terms narrower in light treatment. Ecological niche breadths of Q. variabilis under moisture and nutrient treatment were wider than those of light one. Ecological niche of Q. acutissima was wider than those of Q. variabilis in all the environmental treatments. Ecological overlap between two species was higher with a range of 0.87$\sim$0.92, especially higher in soil moisture factor. These results means that Q. acutissima is more competitive than Q. variabilis, especially in soil moisture condition. Two species were ordinated with distinct group based on 9 characters. From these results, it can be explained that what Q. variabilis distributed in bad soil condition is due to the escape strategy, because of its low competitive ability to Q. acutissima in natural communities.

A Study on Forestation for Landscaping around the Lakes in the Upper Watersheds of North Han River (북한강상류수계(北漢江上流水系)의 호수단지주변삼림(湖水団地周辺森林)의 풍경적시업(風景的施業)에 관(関)한 연구(硏究))

  • Ho, Ul Yeong
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.1-24
    • /
    • 1981
  • Kangweon-Do is rich in sightseeing resources. There are three sightseeing areas;first, mountain area including Seolak and Ohdae National Parks, and chiak Provincial Park; second eastern coastal area; third lake area including the watersheds of North Han River. In this paper, several methods of forestation were studied for landscaping the North Han River watersheds centering around Chounchon. In Chunchon lake complex, there are four lakes; Uiam, Chunchon, Soyang and Paro from down to upper stream. The total surface area of the above four lakes is $14.4km^2$ the total pondage of them 4,155 million $m^3$, the total generation of electric power of them 410 thousand Kw, and the total forest area bordering on them $1,208km^2$. The bordering forest consists of planned management forest ($745km^2$) and non-planned management forest ($463km^2$). The latter is divided into green belt zone, natural conservation area, and protection forest. The forest in green belt amounts to $177km^2$ and centers around the 10km radios from Chunchon. The forest in natural conservation area amounts to $165km^2$, which is established within 2km sight range from the Soyang-lake sides. Protection forest surrounding the lakes is $121km^2$ There are many scenic places, recreation gardens, cultural goods and ruins in this lake complex, which are the same good tourist resources as lakes and forest. The forest encirelng the lakes has the poor average growing stock of $15m^3/ha$, because 70% of the forest consists of the young plantation of 1 to 2 age class. The ration of the needle-leaved forest, the broad-leaved forest and the mixed forest in 35:37:28. From the standpoint of ownership, the forest consists of national forest (36%), provincial forest (14%), Gun forest (5%) and private forest(45%). The greater part of the forest soil, originated from granite and gneiss, is much liable to weathering. Because the surface soil is mostly sterile, the fertilization for improving the soil quality is strongly urged. Considering the above-mentioned, the forestation methods for improving landscape of the North Han River Watersheds are suggested as follows: 1) The mature-stage forest should be induced by means of fertilizing and tendering, as the forest in this area is the young plantation with poor soil. 2) The bare land should be afforested by planting the rapid growing species, such as rigida pine, alder, and etc. 3) The bare land in the canyon with moderate moist and comparatively rich soil should be planted with Korean-pine, larch, ro fir. 4) Japaness-pine stand should be changed into Korean-pine, fir, spruce or hemlock stand from ravine to top gradually, because the Japanese-pine has poor capacity of water conservation and great liability to pine gall midge. 5) Present hard-wood forest, consisting of miscellaneous trees comparatively less valuable from the point of wood quality and scenerity, should be change into oak, maple, fraxinus-rhynchophylla, birch or juglan stand which is comparatively more valuable. 6) In the mountain foot within the sight-range, stands should be established with such species as cherry, weeping willow, white poplar, machilus, maiden-hair tree, juniper, chestnut or apricot. 7) The regeneration of some broad-leaved forests should be induced to the middle forest type, leading to the harmonious arrangement of the two storied forest and the coppice. 8) For the preservation of scenery, the reproduction of the soft-wood forest should be done under the selection method or the shelter-wood system. 9) Mixed forest should be regenerated under the middle forest system with upper needle-leaved forest and lower broad-leaved forest. In brief, the nature's mysteriousness should be conserved by combining the womanly elegance of the lakes and the manly grandeur of the forest.

  • PDF