• 제목/요약/키워드: foundation mass

검색결과 369건 처리시간 0.026초

기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향 (Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls)

  • 유충식;김주석
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.7-19
    • /
    • 2002
  • 본 논문에서는 기초지반의 강성이 블록식 보강토 옹벽의 거동에 미치는 영향에 대한 내용을 다루었다. 기초지반의 강성이 블록식 보강토 옹벽의 거동에 미치는 근본적인 메카니즘을 고찰하기 위해 보강토 옹벽에 대한 축소모형실험을 수행하였으며 축소모형실험 결과의 타당성을 검토하고 모형실험에서 다룰 수 없었던 다양한 조건을 고려함과 아울러서 현장옹벽 응력수준의 거동을 고찰하기 위해 가상의 현장옹벽에 대해 유한요소해석을 이용한 매개변수 연구를 수행하였다. 모형실험 및 유한요소해석 결과에 의하면 기초지반의 강성이 감소할수록 벽체의 변위는 현저히 증가하며, 이러한 벽체변위 증가 현상은 보강토체 내부변형보다는 보강토체의 강체 거동으로 인해 야기되는 메카니즘을 보이는 것으로 나타나 기초지반에 관련된 문제를 외적안정성의 개념에서 다루고 있는 현 설계기준은 타당한 것으로 나타났다. 본 논문에서는 모형실험 및 유한요소해석 결과를 종합하여 실무적 측면에서의 중요성을 다각적으로 고찰하였다.

냉각수 순환 형태의 파이프 쿨링 공법을 이용한 매스콘크리트 수화열 제어 (Hydartion Heat Control with Closed Loop Pipe Cooling System)

  • 박찬규;손상현;이승훈;장기욱;정재홍;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.403-408
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. However, open pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance result of hydration heat control with closed loop pipe cooling system.

  • PDF

Seismic evaluation of fluid-elevated tank-foundation/soil systems in frequency domain

  • Livaoglu, R.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.101-119
    • /
    • 2005
  • An efficient methodology is presented to evaluate the seismic behavior of a Fluid-Elevated Tank-Foundation/Soil system taking the embedment effects into accounts. The frequency-dependent cone model is used for considering the elevated tank-foundation/soil interaction and the equivalent spring-mass model given in the Eurocode-8 is used for fluid-elevated tank interaction. Both models are combined to obtain the seismic response of the systems considering the sloshing effects of the fluid and frequency-dependent properties of soil. The analysis is carried out in the frequency domain with a modal analysis procedure. The presented methodology with less computational efforts takes account of; the soil and fluid interactions, the material and radiation damping effects of the elastic half-space, and the embedment effects. Some conclusions may be summarized as follows; the sloshing response is not practically affected by the change of properties in stiff soil such as S1 and S2 and embedment but affected in soft soil. On the other hand, these responses are not affected by embedment in stiff soils but affected in soft soils.

저유동성 몰탈형 주입재에 의한 건물기초보강 (Reinforcement of Building Foundation by the Low Slump Mortar Grout)

  • 천병식;고용일;권형석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.71-76
    • /
    • 2000
  • In generally, grouting consists of injecting a suspension or solution into the voids of soils. The low slump mortar grout has been used in America since 1950's. The Compaction Grouting, the injection of a very stiff under relatively high pressure, form a cylinderical grout support pile. The grout generally does not enter soil pores but remains in homogeneous mass that gives controlled displacement either to compact loose soils, or for lifting of structures, or both. In this paper, on the case of the reinforcement construction of 00 plant that the foundation's bearing capacity is insufficient and is to reinforce the foundation, a study has been peformed to analyze the effectiveness of the ground improvement. The bearing capacity of the Compaction Pile has been verified by the S.P.T and the settlement of the improved ground has been monitored rising the magnetic extensometer.

  • PDF

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

코일스프링과 오일댐퍼를 가지는 동흡진기의 특성에 관한 연구 (A Study on the Characteristics of Dynamic Vibration Absorber with Coil Spring and Oil Damper)

  • 김광식;안찬우
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.170-175
    • /
    • 1988
  • A study on the dynamic vibration absorber with coil spring and oil damper was carried out both theoretically and experimentally. A main mass is attached to a foundation using coil spring and oil damper. A harmonic motion was applied to the foundation. The effects of the dynamic vibration sbsorber are theoretically summarized in graphs, and tested on a vibratory model for the isolation of actual mechanical vibration. As a result, the first resonance amplitude ratio increased and the second resonance amplitude ratio decreased as the absorber spring constant increased. When the absorber mass increase, the first resonance amplitude ratio is decreased and the second resonace amplitude ratio is increased.

  • PDF

종동력을 받는 외팔 Timoshenko보의 동적안정성에 미치는 부분탄성기초의 영향 (Effect of a Partial Elastic Foundation on Dynamic Stability of a Cantilevered Timoshenko Beam under a Follower Force)

  • 류봉조;류시웅;한현희;김효준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.911-916
    • /
    • 2004
  • The paper deals with the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam is assumed to be a Timoshenko beam with a concentrated mass taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and FEM is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, concentrated mass and rotary inertia of the beam is fully investigated.

  • PDF

앵커의 위치에 따른 토류벽의 Mass 변형특성 (Mass Movement of Tieback Walls)

  • 김낙경;박종식;주준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.537-544
    • /
    • 2003
  • Mass movement of anchored walls is defined and its characteristics were discussed. A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and used in practice. However, the behavior of an anchored wall can not be predicted well, if the locations of anchor bonded zone are near the wall. Mass movement is defined as the movement of anchor bonded zone due to the excavation without the change in the anchor load. Case histories of anchored walls were analyzed and the normalized mass movement chart were developed. This mass movement chart can provide the idea how to locate anchors to minimize the deflection of the wall. The further the anchor bonded zone is located from the wall, the less the movement of the wall due to excavation occurs.

  • PDF

진동대 반력기초의 진동사용성 평가 (The Vibration Comfort Evaluation of the Shaking Table Mass Foundation)

  • 최형석;정다정;김성도;정진환
    • 한국지진공학회논문집
    • /
    • 제15권2호
    • /
    • pp.53-60
    • /
    • 2011
  • 최근 구조물의 사용성이 설계시 중요한 항목으로 대두되면서 구조물의 안전성 뿐만 아니라, 구조물 내 거주자 및 고가의 장비에도 영향을 주는 기계진동을 저감시키기 위한 연구가 활발히 진행되고 있다. 기계진동은 기초의 질량과 가진 질량의 비로 나타낼 수 있는 질량비에 의존하게 되는데, 이러한 질량비는 사용성 기준에서 제시한 구조물의 가속도 허용치 내에서 결정할 수 있다. 본 논문에서는 진동 사용성에 대한 문제를 해결하기 위해 수치적인 접근과 실제 구조물의 적용성을 검증하고, 대형 진동대 장비가 설치된 시설에 적용하여 실험한 해석적 연구를 바탕으로 인체진동특성에 대한 사용성을 평가함과 동시에 최적의 질량비를 확인하였다. 단자유도로 수치해석한 결과값은 실제 구조물을 유한요소 해석한 결과와 잘 부합하여 Spring-Damper Model로 이상화하는 것이 유효한 것으로 판단되었다. 또한 ISO 2631 기준에서 제시한 사용성 한계인 0.8 $m/sec^2$과 비교한 결과, 실제 구조물의 자중을 고려한 진동대와 콘크리트 기초의 최적 질량비는 0.013이하여야 함을 확인하였고, 예제 실험 시설은 진동실험에 대해 적정질량비를 가지고 있음을 확인하였다.