• Title/Summary/Keyword: foundation mass

Search Result 374, Processing Time 0.027 seconds

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Mock-up Test of Improving Super Retarding Concrete to Control of Hydration Heat Crack of Foundation Mat Mass Concrete (기초매트 매스콘크리트의 수화열 균열제어로서 초지연콘크리트 활용에 관한 Mock-up 실험)

  • Lee, Jae-Sam;Bae, Yeoun-Ki;Noh, Sang-Kyun;Kim, Suk-Il;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.777-780
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown are gradually Manhattanized, the very thick massive concrete is selected as the foundation of architectures. By the way, because this mass concrete cannot be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred, which are pointed out as the problems. Thus, this study performed Mock-up test to apply the hydration heat controlling method of massive concrete for horizontal partition pouring construction to the building sites for the purpose of securing the stability on the cracks by the internal force from the difference of hydration exothermic period on the upper layer and the lower layer of massive concrete and checked the efficiency. As the results of test, in case of setting time difference method by super retarder with 2 layers and 4 layers, the effect that temperature gaps between upper part and lower part were lowered and the possibility of crack occurrence was decreased as the peak time of the heat of hydration became delayed to the latter term could be confirmed.

  • PDF

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Gintonin facilitates brain delivery of donepezil, a therapeutic drug for Alzheimer disease, through lysophosphatidic acid 1/3 and vascular endothelial growth factor receptors

  • Choi, Sun-Hye;Lee, Na-Eun;Cho, Hee-Jung;Lee, Ra Mi;Rhim, Hyewhon;Kim, Hyoung-Chun;Han, Mun;Lee, Eun-Hee;Park, Juyoung;Kim, Jeong Nam;Kim, Byung Joo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.264-272
    • /
    • 2021
  • Background: Gintonin is a ginseng-derived exogenous G-protein-coupled lysophosphatidic acid (LPA) receptor ligand, which exhibits in vitro and in vivo functions against Alzheimer disease (AD) through lysophosphatidic acid 1/3 receptors. A recent study demonstrated that systemic treatment with gintonin enhances paracellular permeability of the blood-brain barrier (BBB) through the LPA1/3 receptor. However, little is known about whether gintonin can enhance brain delivery of donepezil (DPZ) (Aricept), which is a representative cognition-improving drug used in AD clinics. In the present study, we examined whether systemic administration of gintonin can stimulate brain delivery of DPZ. Methods: We administered gintonin and DPZ alone or coadministered gintonin with DPZ intravenously or orally to rats. Then we collected the cerebral spinal fluid (CSF) and serum and determined the DPZ concentration through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: Intravenous, but not oral, coadministration of gintonin with DPZ increased the CSF concentration of DPZ in a concentration- and time-dependent manner. Gintonin-mediated enhancement of brain delivery of DPZ was blocked by Ki16425, a LPA1/3 receptor antagonist. Coadministration of vascular endothelial growth factor (VEGF) + gintonin with DPZ similarly increased CSF DPZ concentration. However, gintonin-mediated enhancement of brain delivery of DPZ was blocked by axitinip, a VEGF receptor antagonist. Mannitol, a BBB disrupting agent that increases the BBB permeability, enhanced gintonin-mediated enhancement of brain delivery of DPZ. Conclusions: We found that intravenous, but not oral, coadministration of gintonin facilitates brain delivery of DPZ from plasma via LPA1/3 and VEGF receptors. Gintonin is a potential candidate as a ginseng-derived novel agent for the brain delivery of DPZ for treatment of patients with AD.

Oxidation of Phenol Using Ozone-containing Microbubbles Formed by Electrostatic Spray (전기장에 의해 생성된 미세기포를 이용한 페놀의 오존산화)

  • Shin, Won-Tae;Jung, Yoo-Jin;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1292-1297
    • /
    • 2005
  • The use of ozone in water and wastewater treatment systems has been known to be a process that is limited by mass transfer. The most effective way to overcome this limitation is to increase the interfacial area available for mass transfer by decreasing the size of the ozone gas bubbles that are dispersed in solution. Electrostatic spraying(ES) of ozone into water was investigated in this work as a method of increasing the rate of mass transfer of ozone into a solution and thereby increasing the rate of phenol oxidation. Results were obtained for ES at input power levels ranging from 0 to 4 kV and compared with two different pore-size bubble diffusers($10{\sim}15{\mu}m$ and $40{\sim}60{\mu}m$). It was determined that the rate of mass transfer could be increased by as much as 40% when the applied voltage was increased from 0 to 4 kV as a result of the smaller bubbles generated by ES. In addition, ES was shown to be more effective than the medium-pore-size($10{\sim}15{\mu}m$) bubble diffuser and the best results were achieved at low gas flow rates.

A Study on Design Development of Wood & Metal Products Using Digital Data (디지털 데이터를 이용한 목제품 및 금속제품 디자인 개발에 관한 연구)

  • Yoon, Yeoh-Hang;Lee, Sung-Won
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.2
    • /
    • pp.110-121
    • /
    • 2012
  • With people's recent increasing interest in good design products, wood and metal products have gained great popularity. However, it was believed that it would be necessary to have a transformation to the manufacturing method based on digital data and equipments from existing analog-based manufacturing method, in order to meet consumers' demand. This study was aimed to seek for the possibility of mass-producing wood and metal products through the research on the type, usage and development conditions of digital data and the methods of utilizing digital equipments. As for research methods, the study analyzed the concepts and types of digital data through various internet and literature reviews and suggested perpetual calendar products as the final outcome of design development using computer data. Through this, the study summarized and organized actual design development processes by stage to provide basic data that could become the foundation of research on the design of wood and metal products using digital data. Through the outcome of this project, the following effects could be expected by developing wood and metal products through digital data. First, its accurate and precise process would help mass-produce complex forms of products and reduce their defective rate. Second, the compatible production of various types of digital equipments would lead to a cost reduction. Third, the diversity of design could be pursued by overcoming technical limitations. In order to satisfy the above expectation effects, such as realization of developing and producing various wood and metal products, there should be designers' creative experimental spirits, their active information exchange and cooperation with the companies concerned.

  • PDF

Issues in structural health monitoring for fixed-type offshore structures under harsh tidal environments

  • Jung, Byung-Jin;Park, Jong-Woong;Sim, Sung-Han;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.335-353
    • /
    • 2015
  • Previous long-term measurements of the Uldolmok tidal current power plant showed that the structure's natural frequencies fluctuate with a constant cycle-i.e., twice a day with changes in tidal height and tidal current velocity. This study aims to improve structural health monitoring (SHM) techniques for offshore structures under a harsh tidal environment like the Uldolmok Strait. In this study, lab-scale experiments on a simplified offshore structure as a lab-scale test structure were conducted in a circulating water channel to thoroughly investigate the causes of fluctuation of the natural frequencies and to validate the displacement estimation method using multimetric data fusion. To this end, the numerical study was additionally carried out on the simplified offshore structure with damage scenarios, and the corresponding change in the natural frequency was analyzed to support the experimental results. In conclusion, (1) the damage that occurred at the foundation resulted in a more significant change in natural frequencies compared with the effect of added mass; moreover, the structural system became nonlinear when the damage was severe; (2) the proposed damage index was able to indicate an approximate level of damage and the nonlinearity of the lab-scale test structure; (3) displacement estimation using data fusion was valid compared with the reference displacement using the vision-based method.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

The impact of freeze-drying on the glycoproteomic profiles of human milk

  • Hahn, Won-Ho;Bae, Seong-Phil;Lee, Hookeun;Park, Jong-Moon;Park, Suyeon;Lee, Joohyun;Kang, Nam Mi
    • Analytical Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.177-185
    • /
    • 2020
  • Human milk (HM) glycoproteins play important roles protecting infants against various pathogens. Recently, freezing HM is reported to affect some glycoproteins and freeze-drying is suggested as an alternative method. However, the effects of freeze-drying on HM glycoproteins were not evaluated yet. Six fresh HM samples were collected from three healthy mothers at 15 and 60th days of lactation from each mother. Each sample was divided into frozen and freeze-dried subgroups yielding totally 12 samples, and the glycoproteomic analysis was performed by liquid chromatography mass spectrometry. The results were compared between samples of 15 and 60th days of lactation, and before and after the freeze-drying. Totally, 203 glycoproteins were detected. The glycoprotein levels were not different between two groups of 15/60th day of lactation and before/after freeze-drying groups (P > 0.050). In addition, significant correlation of glycoprotein levels was found between the different lactation stages (r = 0.897, P < 0.001) and the status of freeze-drying (r = 0.887, P < 0.001) in a partial correlation analysis. As no significant change of HM glycoproteins was not found after the freeze-drying, we hope that introducing freeze-drying to HM banks is supported by the present study. This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MSIP) (No.2017R1D1A1B03034270; No.2020R1A2C1005082).

Optimal variables of TMDs for multi-mode buffeting control of long-span bridges

  • Chen, S.R.;Cai, C.S.;Gu, M.;Chang, C.C.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.387-402
    • /
    • 2003
  • In the past decades, much effort has been made towards the study of single-mode-based vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Dampers(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section being more slender and streamlined, multi-mode coupled vibrations as well as their controls have become very important for large bridges susceptible to strong winds. As a simple but effective device, the TMD system especially the semi-active one has become a promising option for such coupled vibration controls. However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, research on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the development of a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive parametric analysis on the optimal variables of this control is substantial. In the present study, a multi-mode control strategy named "three-row" TMD system is discussed and the general numerical equations are developed at first. Then a parametric study on the optimal control variables for the "three-row" TMD system is conducted for a prototype Humen Suspension Bridge, through which some useful information and a better understanding of the optimal control variables to suppress the coupled vibrations are obtained. This information lays a foundation for the design of semi-active control.