Browse > Article
http://dx.doi.org/10.5806/AST.2020.33.4.177

The impact of freeze-drying on the glycoproteomic profiles of human milk  

Hahn, Won-Ho (Department of Pediatrics, School of Medicine, Soon Chun Hyang University, Seoul Hospital)
Bae, Seong-Phil (Department of Pediatrics, School of Medicine, Soon Chun Hyang University, Seoul Hospital)
Lee, Hookeun (College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University)
Park, Jong-Moon (College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University)
Park, Suyeon (Department of Biostatistics, Soon Chun Hyang Medical Center)
Lee, Joohyun (Department of Crop Ccience Konkuk University)
Kang, Nam Mi (Department of Nursing, Konkuk University)
Publication Information
Analytical Science and Technology / v.33, no.4, 2020 , pp. 177-185 More about this Journal
Abstract
Human milk (HM) glycoproteins play important roles protecting infants against various pathogens. Recently, freezing HM is reported to affect some glycoproteins and freeze-drying is suggested as an alternative method. However, the effects of freeze-drying on HM glycoproteins were not evaluated yet. Six fresh HM samples were collected from three healthy mothers at 15 and 60th days of lactation from each mother. Each sample was divided into frozen and freeze-dried subgroups yielding totally 12 samples, and the glycoproteomic analysis was performed by liquid chromatography mass spectrometry. The results were compared between samples of 15 and 60th days of lactation, and before and after the freeze-drying. Totally, 203 glycoproteins were detected. The glycoprotein levels were not different between two groups of 15/60th day of lactation and before/after freeze-drying groups (P > 0.050). In addition, significant correlation of glycoprotein levels was found between the different lactation stages (r = 0.897, P < 0.001) and the status of freeze-drying (r = 0.887, P < 0.001) in a partial correlation analysis. As no significant change of HM glycoproteins was not found after the freeze-drying, we hope that introducing freeze-drying to HM banks is supported by the present study. This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MSIP) (No.2017R1D1A1B03034270; No.2020R1A2C1005082).
Keywords
freeze-drying; human milk; lyophilization; mass spectrometry; glycoprotein; glycoproteomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Centre for Clinical Practice at NICE. National Institute for Health and Clinical Excellence: Guidance. Donor Breast Milk Banks: The Operation of Donor Milk Bank Services. London: National Institute for Health and Clinical Excellence (UK); 2010.
2 J. Castro-Albarran, B. R. Aguilar-Uscanga, F. Calon, I. St-Amour, J. Solis-Pacheco, L. Saucier and C. Ratti, Dry. Technol., 34, 1801-1809 (2016).   DOI
3 A. Cavazos-Garduno, J. C. Serrano-Nino, J. R. Solis-Pacheco, J. A. Gutierrez-Padilla, O. Gonzalez-Reynoso, H. S. Garcia and B. R. Aguilar-Uscanga, J. Food Nutr. Res., 4, 296-302 (2016).
4 A. K. Leung and R. S. Sauve, J. Natl. Med. Assoc., 97, 1010-1019 (2005).
5 J. Jeon, J. Yang, J. M. Park, N. Y. Han, Y. B. Lee and H. Lee, J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 1092, 88-94 (2018).   DOI
6 A. B. Arul, J. M. Park, H. Lee, J. H. Baek, J. Jeon, E. Ji, J. W. Oh and K. P. Kim, Curr. Proteomics., 13, 55-60 (2016).   DOI
7 A. B. Arul, J. M. Park, H. Lee, N. Y. Han and J. Jeon, Curr. Proteomics., 13, 48-54 (2016).   DOI
8 J. Cox and M. Mann, Nat. Biotechnol., 26, 1367-1372 (2008).   DOI
9 J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj and M. Mann, Mol. Cell. Proteomics., 13, 2513-2526 (2014).   DOI
10 J. Zhu and K. A. Dingess, Nutrients., 11, (2019).
11 J. A. Peterson, M. Hamosh, C. D. Scallan, R. L. Ceriani, T. R. Henderson, N. R. Mehta, M. Armand and P. Hamosh, Pediatr. Res., 44, 499-506 (1998).   DOI
12 Y. Liao, R. Alvarado, B. Phinney and B. Lonnerdal, J. Proteome. Res., 10, 1746-1754 (2011).   DOI
13 Y. Lu, J. Liu, Y. Jia, Y. Yang, Q. Chen, L. Sun, S. Song, L. Huang and Z. Wang, J. Agric. Food Chem., 67, 10702-10712 (2019).   DOI
14 B. Liu and D. S. Newburg, Breastfeeding. Med., 8, 354-362 (2013).   DOI
15 J. A. Peterson, S. Patton and M. Hamosh, Biol. Neonat. 74, 143-162 (1998).   DOI
16 S. Karav, A. Le Parc, J. M. Leite Nobrega de Moura Bell, S. A. Frese, N. Kirmiz, D. E. Block, D. Barile and D. A. Mills, Appl. Environ. Microbiol. 82, 3622-3630 (2016).   DOI
17 C. E. Molinari, Y. S. Casadio, B. T. Hartmann, A. Livk, S. Bringans, P. G. Arthur and P. E. Hartmann, J. Proteome. Res., 11, 1696-1714 (2012).   DOI
18 X. Gao, R. J. McMahon, J. G. Woo, B. S. Davidson, A. L. Morrow and Q. Zhang, J. Proteome. Res., 11, 3897-3907 (2012).   DOI
19 W. H. Hahn, J. H. Song, J. B. Seo, J. E. Lee, J. S. Lee, S. Song, J. Lee and N. M. Kang, Asia. Pac. J. Clin. Nutr., 27, 204-210 (2018).
20 A. DeMarchis, K. Israel-Ballard, K. A. Mansen and C. Engmann, J. Perinatol., 37, 469-474 (2017).   DOI
21 Italian Association of Human Milk Banks, S. Arslanoglu, E. Bertino, P. Tonetto, G. De Nisi, A. M. Ambruzzi, A. Biasini, C. Profeti, M. R. Spreghini and G. E. Moro, J. Matern. Fetal. Neonatal. Med., 23, 1-20 (2010).
22 N. R. Garcia-Lara, D. E. Vieco, J. De la Cruz-Bertolo, D. Lora-Pablos, N. U. Velasco and C. R. Pallas-Alonso, J. Pediatr. Gastroenterol. Nutr., 57, 377-382 (2013).   DOI
23 J. Salcedo, M. Gormaz, M. C. Lopez-Mendoza, E. Nogarotto and D. Silvestre, J. Pediatr. Gastroenterol. Nutr., 60, 527-532 (2015).   DOI
24 D. E. Rollo, P. G. Radmacher, R. M. Turcu, S. R. Myers and D. H. Adamkin, J. Perinatol., 34, 284-286 (2014).   DOI
25 M. V. Cortez and E. A. Soria, Breastfeeding. Med., 11, 551-554 (2016).   DOI
26 W. H. Hahn, J. Kim, S. Song, S. Park and N. M. Kang, J. Matern. Fetal. Neonatal. Med., 32, 985-991 (2017).
27 B. Lozano, A. I. Castellote, R. Montes and M. C. Lopez-Sabater, Int. J. Food. Sci. Nutr., 65, 703-707 (2014).   DOI
28 D. Gutierrez and J. A. de Almeida, J. Hum. Lact., 14, 333-335 (1998).   DOI