• 제목/요약/키워드: fouling removal process condition

검색결과 21건 처리시간 0.031초

CDI 전극 내 파울링 현상 확인 및 제거공정 조건의 확립 (Confirmation of The Fouling Phenomena in CDI Process and The Establishment of Its Removal Process Conditions)

  • 김태영;임지원
    • 멤브레인
    • /
    • 제29권5호
    • /
    • pp.276-283
    • /
    • 2019
  • 본 논문에서는 축전식 탈염 공정에서 파울링 현상의 확인과 파울링의 제거공정 조건을 확립하는 연구를 진행하였다. 공급액에 첨가된 파울링 유발 물질인 Humic acid sodium salt (HA)의 농도는 5, 10, 15 mg/L이었다. 주어진 일반의 흡/탈착 조건에서 파울링의 발생은 시간이 지남에 따라 흡착과 탈착 농도의 증가로 확인할 수 있었다. 파울링 현상을 제거하기 위해 흡착 및 탈착에서의 전압과 시간을 변경하였다. 이로부터 흡착 조건 1.2 V/5 min, 탈착 조건 -3 V/2 min에서 파울링 제거를 확인하였다.

응집·한외여과 공정에서 응집조건 결정에 관한 연구 (Effect of Coagulation Condition on Coagulation/Ultrafiltration Membrane Process)

  • 문성용;이상협;김승현;문병현
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.379-384
    • /
    • 2005
  • In this research, coagulation was employed as the pretreatment for membrane process. The effective coagulation conditions were decided after the discussion of different coagulant doses and mixing conditions, etc. Raw water was taken from Nakdong River. The best operation occurred when G value was $230s^{-1}$ and the slow mixing lasted around 5 minutes at G value was $23s^{-1}$. To investigate the optimum coagulant dosage, the optimum organics removal was target as organic removal reduces membrane fouling effectively than particle removal. This result indicated that organics are more important causes than turbidity for membrane fouling. However, turbidity becomes an important factor after certain amount of organic matters is removed.

CDI 공정에서 Alginic Acid Sodium Salt의 파울링 현상 확인 및 제거 조건 확립 (Identification of Fouling Phenomena and Establishment for Optimized Removal Process of Alginic Acid Sodium Salt Through Capacitive Deionization)

  • 이진연;임지원
    • 멤브레인
    • /
    • 제30권5호
    • /
    • pp.342-349
    • /
    • 2020
  • 본 연구에서는 자연수, 하폐수에 많이 포함되어 있는 파울링 유발 물질 중 하나인 alginic acid sodium salt를 축전식 탈염공정(capacity deionization, CDI)에서 파울링 감소를 위한 조건을 확립하고자 한다. 먼저 feed 물질로 NaCl을 사용하였다. 이는 파울링 발생에 대한 비교 물질로, 파울링이 발생하지 않음을 관찰하였다. Alginic acid sodium salt를 사용하여 파울링 발생 여부를 확인하였다. 농도는 7 mg/L, 흡착 1.2 V 5 min, 탈착 -2 V 1 min에서 효율이 50.07%으로 제일 효율적인 탈착 조건임을 알 수 있었다.

십자형 응집-UF 막분리 공정 적용시 전처리 응집조건에 따른 막오염 메카니즘 규명 (The Evaluation of Fouling Mechanism on Cross Flow Precoagulation-UF Process)

  • 정철우;손희종
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.639-645
    • /
    • 2008
  • 십자형 응집-한외여과 막분리 공정 운전시 응집조건에 따른 영향을 살펴보면 급속교반-UF 공정과 응집-침전-UF 공정에서 투과 flux의 변화는 크게 나타나지 않았으며 UF막의 막오염 억제 측면에서는 응집전처리공정으로서 1분간의 짧은 급속혼화만으로도 충분한 것으로 나타났다. 교반강도에 따른 투과 flux의 변화결과 교반강도에 따라 형성되는 floc의 크기가 거의 유사하게 형성되어 교반강도에 따른 영향은 나타나지 않았다. 응집제 주입량에 따른 투과 flux변화를 살펴보면 응집제 주입량이 증가함에 따라 유기물의 제거가 크게 일어나 유기물 부하의 감소와 floc의 크기가 증가함에 따라 다공성 케이크층의 형성에 따른 막저항의 감소로 인하여 투과 flux가 향상되었다. 막의 재질과 전처리 응집공정적용에 따른 여과메카니즘 분석결과 막의 재질에 따라서는 친수성 재질의 막에 비하여 소수성 재질의 막의 경우 막의 공극속으로 입자의 침투가 발생하여 침적 흡착되는 현상과 막의 표면에서 형성되는 cake층에 의한 투과 flux 감소가 주원인이 되었으며 응집공정을 전처리공정으로 적용시 UF단독공정에 비하여 막오염 발생이 저감되었다.

응집-UF 정수공정을 위한 칠적응집조건의 결정 (Determination of Optimal Coagulation Condition for Coagulation-UF Water Treatment Process)

  • 이철우;안수경;강임석
    • 대한환경공학회지
    • /
    • 제27권8호
    • /
    • pp.799-806
    • /
    • 2005
  • 응집-UF 정수공정시 응집 전처리 공정에 있어 완속혼합없이 급속혼화만으로 충분한 응집의 효과를 기대할 수 있으며, 급속혼화장치로 in-line static mixer를 사용한 경우가 기존의 back mixer를 사용 한 경우보다 롤은 DOC 제거효율을 얻을 수 있었다. 또한, 적정 주입량인 16 mg alum/L에서 막의 투과 flux 감소가 가장 적게 나타났으며 적정 주입량보다 너무 적거나 또는 너무 많은 경우 모두 막의 투과 fiux 감소가 크게 나타났다. 또한 막의 fouling에 크게 영향을 미치는 것은 hydrophobic 물질로 이는 응집 전처리시 효과적으로 제거되어짐으로써 막의 투과 flux 감소를 줄일 수 있었다.

Nitrogen Removal and Behavior of Soluble Microbial Products (SMP) in the MBR Process with Intermittent Aerobic Condition

  • Cha, Gi-Cheol;Myoung Hwang
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2001
  • A lab-scale submerged membrane bio-reactor (MBR) with intermittent aeration was carried out for investigating the behavior of soluble microbial products (SMP). The SMP concentration of mixed liquor at Run 1 accumulated immediately at the end of running and biodegradable SMP converted into non-biodegradable SMP, but it did not occurred at the Run 2 and 3. The SMP formation coefficient (k) at the anoxic phase was a little higher than oxic phase, and the lowest k was investigated at Run 3. The combination of biological denitrification with the MBR Process was advantageous in the prevention of membrane bio-fouling.

  • PDF

Optimization of coagulation conditions for pretreatment of microfiltration process using response surface methodology

  • Jung, Jungwoo;Kim, Yoon-Jin;Park, Youn-Jong;Lee, Sangho;Kim, Dong-ha
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.223-229
    • /
    • 2015
  • The application of coagulation for feed water pretreatment prior to microfiltration (MF) process has been widely adopted to alleviate fouling due to particles and organic matters in feed water. However, the efficiency of coagulation pretreatment for MF is sensitive to its operation conditions such as pH and coagulant dose. Moreover, the optimum coagulation condition for MF process is different from that for rapid sand filtration in conventional drinking water treatment. In this study, the use of response surface methodology (RSM) was attempted to determine coagulation conditions optimized for pretreatment of MF. The center-united experimental design was used to quantify the effects of coagulant dose and pH on the control of fouling control as well as the removal organic matters. A MF membrane (SDI Samsung, Korea) made of polyvinylidene fluoride (PVDF) was used for the filtration experiments. Poly aluminum chloride (PAC) was used as the coagulant and a series of jar tests were conducted under various conditions. The flux was $90L/m^2-h$ and the fouling rate were calculated in each condition. As a result of this study, an empirical model was derived to explore the optimized conditions for coagulant dose and pH for minimization of the fouling rate. This model also allowed the prediction of the efficiency of the coagulation efficiency. The experimental results were in good agreement with the predictions, suggesting that RSM has potential as a practical method for modeling the coagulation pretreatment for MF.

가축분뇨 혐기 소화액 처리를 위한 막 증발과 역삼투 공정 성능 비교 (Comparison of membrane distillation with reverse osmosis process for the treatment of anaerobic digestate of livestock wastewater)

  • 김승환;조진우
    • 상하수도학회지
    • /
    • 제34권4호
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, a pilot-scale (3 ㎥/day) membrane distillation (MD) process was operated to treat digestate produced from anaerobic digestion of livestock wastewater. In order to evaluate the performance and energy cost of MD process, it was compared with the pilot scale (10 ㎥/day) reverse osmosis (RO) process, expected competitive process, under same feed condition. As results, MD process shows stable permeate flux (average 10.1 L/㎡/hr) until 150 hours, whereas permeate flux of RO process was decreased from 5.3 to 1.5 L/㎡/hr within 24 hours. In the case of removal of COD, TN, and TP, MD process shows a high removal rate (98.7, 93.7, and 99% respectively) stably until 150 hours. However, in the case of RO process, removal rate was decreased from 91.6 to 69.5% in COD and from 93.7 to 76.0% in TP during 100 hours of operation. Removal rate of TN in RO process was fluctuated in the range of 34.5-62.9% (average 44.6%) during the operation. As a result of energy cost analysis, MD process using waste heat for heating the feed shows 18% lower cost compare with RO process. Thus, overall efficiency of the MD process is higher then that of the RO process in terms of permeate flux, removal rate of salts, and operating cost (in the case of using waste heat) in treating the anaerobic digestate of livestock wastewater.

Improving the smoking quality of papermaking tobacco sheet extract by using electrodialysis

  • Zhang, Zenghui;Ge, Shaolin;Jiang, Chenxiao;Zhao, Yue;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • 제5권1호
    • /
    • pp.31-40
    • /
    • 2014
  • Papermaking tobacco sheet is an important reclaimed process for cigarette making. Traditionally, the pressure driven membrane was often used to isolate the effective compounds from the tobacco sheet extract. However, this method is difficult to remove small ionic compounds. Besides, membrane fouling is a major problem for effective use of these pressure driven membrane technologies. In this study, the electrodialysis process is used to removal the chloride ions and nitrate ions, thus the smoking quality of papermaking tobacco sheet extract can get improved. Three types of electrolytes ($Na_2SO_4$, NaCl and HCl) are chosen to prevent the generation of precipitation. The results indicate that 0.1mol/L HCl at current density of $30mA/cm^2$ is the optimal condition for the electrodialysis process. The removal rates of the Cland $NO{_3}^-$ in tobacco sheet extract are 97% and 98.4%, respectively. The electrodialysis process cost was estimated to be 0.11$/L. Naturally, electrodialysis is not only technological feasible, environmental-friendly and economical-attractive for tobacco extract treatment.

PAC 전처리 시 수소이온 농도에 따라 발생 가능한 알루미늄 종에 의한 나노여과막 성능 연구 (Effects of polymeric Al and hydrolysis products of PAC at different pH on performance of nanofiltration with PAC coagulation pretreatment)

  • 최양훈;권지향
    • 상하수도학회지
    • /
    • 제24권1호
    • /
    • pp.15-24
    • /
    • 2010
  • Coagulation can be used for pretreatment of NF membrane filtration. Foulants such as organic matter and particulate can be removed effectively with the process while high flux recovery is maintained. Recently various types of polyaluminium coagulants including polyaluminium chloride(PAC) are commercially available for water treatment. This study examines effects of polymeric Al and hydrolysis products of PAC on nanofiltration membrane performance. Dominant hydrolysis products were polymeric Al, $Al(OH)_3$, and ${Al(OH)_4}^{-1}$ at acidic, neutral, and alkaline pH conditions, respectively. Under acidic pH condition, flux decline was increased with increasing PAC concentrations, possibly due to polymeric Al adsorption on membrane pore and/or surfaces. For neutral and alkaline pH conditions, little flux decline was observed with increasing PAC concentrations except the highest ${Al(OH)_4}^{-1}$ concentration, with which rapid flux decline was shown. Removal of ionic matters was also varied with pH conditions in this study. Especially, conductivity removal was substantially low and $Ca^{2+}$ concentration in the permeate was quite high at neutral pH condition.