• Title/Summary/Keyword: fouling mechanisms

Search Result 26, Processing Time 0.024 seconds

Effect of Step-aeration on Inorganic Particle Mixtures Filtration in a Submerged Hollow Fiber Microfiltration Membrane (침지식 중공사 정밀여과 분리막에서 무기혼합입자 여과에 대한 단계별 공기세정의 영향)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The goal is to compare two different aeration strategies for a pilot scale operation of submerged microfiltration with respect to the minimization of membrane fouling. A constant aeration (65 L/min) was examined parallel with a step-wise increase in airflow rate (40 to 65 L/min). The airflow rate was stepped to a higher rate every 5 min and the step-aeration cycles were repeated at regular intervals of 15 min. The comparative filtration runs were conducted with synthetic water containing powdered activated carbon (~10 g/L) and/or kaolin (~20 g/L) at a constant flux of 80 LMH. The extent and mechanisms of fouling in the microfiltration were identified by determining hydraulic resistance to filtration and the fouling reversibility after cleaning. Results showed that the step-aeration effectively alleviated fouling in the microfiltration of synthetic water compared to when using constant aeration. A substantial decrease in fouling was achieved by combining with coagulation using aluminum salts regardless of the aeration strategies. The constant aeration resulted in increased pore blocking likely due to increased accumulation of particles on the surface of membrane.

Chemically enhanced steam cleaning for the control of ceramic membrane fouling caused by manganese and humic acid (망간과 휴믹산에 의한 세라믹 막 오염의 제어를 위한 약품 스팀세정의 적용)

  • An, Sun-A;Park, Cheol-Gyu;Lee, Jin-San;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.425-436
    • /
    • 2021
  • In this study, chemically enhanced steam cleaning(CESC) was applied as a novel and efficient method for the control of organic and inorganic fouling in ceramic membrane filtration. The constant filtration regression model and the resistance in series model(RISM) were used to investigate the membrane fouling mechanisms. For total filtration, the coefficient of determination(R2) with an approximate value of 1 was obtained in the intermediate blocking model which is considered as the dominant contamination mechanism. In addition, most of the coefficient values showed similar values and this means that the complex fouling was formed during the filtration period. In the RISM, R c/R f increased about 4.37 times in chemically enhanced steam cleaning compared to physical backwashing, which implies that the internal fouling resistance was converted to cake layer resistance, so that the membrane fouling hardly to be removed by physical backwashing could be efficiently removed by chemically enhanced steam cleaning. The results of flux recovery rate showed that high-temperature steam may loosen the structure of the membrane cake layer due to the increase in diffusivity and solubility of chemicals and finally enhance the cleaning effect. As a consequence, it is expected that chemically enhanced steam cleaning can drastically improve the efficiency of membrane filtration process when the characteristics of the foulant are identified.

Fundamentals of Particle Fouling in Membrane Processes

  • Bhattacharjee Subir;Hong Seungkwan
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.

Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes

  • lehi, Arash Yunessnia;Mousavirad, Seyed Jalaleddin;Akbari, Ahmad
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • Dyeing wastewaters are the most problematic wastewater in textile industries and also, growing amounts of waste fibers in carpet industries have concerned environmental specialists. Among different treatment methods, membrane filtration processes as energy-efficient and compatible way, were utilized for several individual problems. In this research, novel hybrid membranes were prepared by waste fibers of mechanical carpets as useful resource of membrane matrix and industrial graphite powder as filler to eliminate Chrysophenine GX from dyeing wastewater. These membranes were expected to be utilized for first stage of hybrid membrane filtration process including (adsorption-ultrafiltration) and nanofiltration in Kashan Textile Company. For scaling of membrane filtration process, fouling mechanism of these membranes were recognized and explained by the use of genetic algorithm, as well. The graphite increased rejection and diminished permeate flux at low concentration but in high concentration, the performance was significantly worsened. Among all hybrid membranes, 18% wt. waste fibers-1% wt. graphite membrane had the best performance and minimum fouling. The maximum pore size of this optimum membrane was ranged from 16.10 to 18.72 nm.

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

Prediction of Slagging/Fouling Propensity of Coal Ash (석탄 회분의 Slagging/Fouling 예측)

  • Lee, Si-Hyun;Park, Chu-Sik;Choi, Sang-Il;Shon, Eung-Kwon
    • 한국연소학회:학술대회논문집
    • /
    • 1995.06a
    • /
    • pp.91-103
    • /
    • 1995
  • In recent years, significant advances have been made in the development of methods to predict ash behavior in utility boilers. This paper provides an overview of methods used to assess and predict ash formation and deposition. It has discussed some of the key problems associated with the formation and deposition of ash during the combustion of pulverized coal. Although considerable progress has been made in understanding of the fundamental mechanisms of ash formation, transport, growth, and strength development, there is still much work to be done. There is a need to develop quantitative relationships between the characteristics of the entrained ash and the physical properties of ash deposits that influence deposit growth, strength development, and cleanability. Also data from bench-scale, pilot-scale, and full-scale units are needed in order to determine operating conditions which will minimize deposition problems, maximize efficiency, and reduce emissions.

  • PDF

Behavior of NOM Fouling in Submerged Photocatalytic Membrane Reactor Combined with $TiO_2$ Nanoparticles ($TiO_2$ 나노입자/UV 결합 침지형 중공사막 시스템에서 자연유기물의 파울링거동)

  • Park, Seung-Soo;Seo, Hyung-Jun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.46-54
    • /
    • 2011
  • In this study, combined effect of airflow rate, $TiO_2$ concentration, solution pH and $Ca^{+2}$ addition on HA (humic acid) fouling in submerged, photocatalytic hollow-fiber microfiltraiton was investigated systematically. Results showed that UV irradiation alone without $TiO_2$ nanoparticles could reduce HA fouling by 40% higher than the fouling obtained without UV irradiation. Compared to the HA fouling without UV irradiation and $TiO_2$ nanoparticles, the HA fouling reduction was about 25% higher only after the addition of $TiO_2$ nanoparticles. Both adsorptive and hydrophilic properties of $TiO_2$ nanoparticles for the HA can be involved in mitigating membrane fouling. It was also found that the aeration itself had lowest effect on fouling mitigation while the HA fouling was affected significantly by solution pH. Transient behavior of zeta potential at different solution pHs suggested that electrostatic interactions between HA and $TiO_2$ nanoparticles should improve photocatalytic efficiency on HA fouling. $TiO_2$ concentration was observed to be more important factor than airflow rate to reduce HA fouling, implying that surface reactivity on $TiO_2$ naoparticles should be important fouling mitigation mechanisms in submerged, photocatalyic microfiltraiton. This was further supported by investigating the effect of $Ca^{+2}$ addition on fouling mitigation. At higher pH (= 10), addition of $Ca^{+2}$ can play an important role in bridging between HA and $TiO_2$ nanoparticles and increasing surface reactivity on nanoparticles, thereby reducing membrane fouling.

Ultrafiltration of oil-in-water emulsion: Analysis of fouling mechanism

  • Chakrabarty, B.;Ghoshal, A.K.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.297-316
    • /
    • 2010
  • Membrane fouling is one of the major operational concerns of membrane processes which results in loss of productivity. This paper investigates the ultrafiltration (UF) results of synthetic oil-in-water (o/w) emulsion using flat sheets of polysulfone (PSf) membrane synthesized with four different compositions. The aim is to identify the mechanisms responsible for the observed permeate flux reduction with time for different PSf membranes. The experiments were carried out at four transmembrane pressures i.e., 68.9 kPa, 103.4 kPa, 137.9 kPa and 172.4 kPa. Three initial oil concentrations i.e., 75 $mgL^{-1}$, 100 $mgL^{-1}$ and 200 $mgL^{-1}$ were considered. The resistance-in-series (RIS) model was applied to interpret the data and on that basis, the individual resistances were evaluated. The significances of these resistances were studied in relation to parameters, namely, transmembrane pressure and initial oil concentration. The total resistance to permeate flow is found to increase with increase in both transmembrane pressure and initial oil concentration while for higher oil concentration, resistance due to concentration polarization is found to be the prevailing resistance. The applicability of the constant pressure filtration models to the experimental data was also tested to explain the blocking process. The study shows that intermediate pore blocking is the dominant mechanism at the initial period of UF while in the later period, the fouling process is found to approach cake filtration like mechanism. However, the duration of pore blocking mechanism is different for different membranes depending on their morphological and permeation properties.

The Effect of Chemical Backwash on Filtration Performance of Batch Membrane Filtration System (회분식 막여과 시스템에서 약품역세가 여과성능에 미치는 영향)

  • Kim, Kwan Yeop;Lee, Eui Jong;Kwon, Jin Sub;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.855-864
    • /
    • 2009
  • The main object of this work was to determine the influence of periodic chemical backwash on filtration resistance in membrane filtration system. In this work Hermia's models were used to investigate the fouling mechanisms involved in the microfiltration of $0.45{\mu}m$ filtered sewage feed. Batch microfiltration experiments were performed at transmembrane pressure 0.4 bar and different feed SCOD concentration (9~67 mgSCOD/L). The results showed that the best fit to experimental data corresponded to the intermediate blocking model followed by the standard and complete blocking model for all the experimental conditions tested. From the simulation results of filtration performance, it was found that in order to maintain sustainable operation of membrane filtration system, irreversible foulant component accumulated continuously on membrane surface and/or pore must be effectively removed. In addition, it was verified that periodic chemical backwash using NaOCl or NaOH effectively improved filtration performance of membrane.

Biofouling and Microbial Induced Corrosion -A Case Study

  • Mohammed, R.A.;Helal, A.M.;Sabah, N.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • In industrial and fluid handling systems, frequently the protective film forming materials suffer from severe corrosion due to microbial effects. As an example, various micro-organisms, including bacteria, exist in seawater normally fed to power and desalination plants. Unless seawater intakes are properly disinfected to control these microbial organisms, biological fouling and microbial induced corrosion (MIC) will be developed. This problem could destroy metallic alloys used for plant construction. Seawater intakes of cogeneration plants are usually disinfected by chlorine gas or sodium hypochlorite solution. The dose of disinfectant is designed according to the level of contamination of the open seawater in the vicinity of the plant intake. Higher temperature levels, lower pH, reduced flow velocity and oxidation potential play an important role in the enhancement of microbial induced corrosion and bio-fouling. This paper describes, in brief, the different types of bacteria, mechanisms of microbiological induced corrosion, susceptibility of different metal alloys to MIC and possible solutions for mitigating this problem in industry. A case study is presented for the power plant steam condenser at Al-Taweelah B-station in Abu Dhabi. The study demonstrates resistance of Titanium tubes to MIC.